В данной статье сформулируем правило умножения отрицательных чисел и дадим ему объяснение. Будет подробно рассмотрен процесс умножения отрицательных чисел. На примерах показаны все возможные случаи.
Умножение отрицательных чисел
Определение 1Правило умножения отрицательных чисел заключается в том, что для того, чтобы умножить два отрицательных числа, необходимо перемножить их модули. Данное правило записывается так: для любых отрицательных чисел – a , - b данное равенство считается верным.
(- а) · (- b) = a · b .
Выше приведено правило умножения двух отрицательных чисел. Исходя из него, докажем выражение: (- а) · (- b) = a · b . Статья умножение чисел с разными знаками рассказывает о том, что равенств а · (- b) = - a · b справедливое, как и (- а) · b = - a · b . Это следует из свойства противоположных чисел, благодаря которому равенства запишутся следующим образом:
(- a) · (- b) = (- a · (- b)) = - (- (a · b)) = a · b .
Тут явно видно доказательство правила умножения отрицательных чисел. Исходя из примеров явно, что произведение двух отрицательных чисел – положительное число. При перемножении модулей чисел результат всегда положительное число.
Данное правило применимо для умножения действительных чисел, рациональных чисел, целых чисел.
Теперь рассмотрим подробно примеры умножения двух отрицательных чисел. При вычислении необходимо пользоваться правилом, написанным выше.
Пример 1
Произвести умножение чисел - 3 и - 5 .
Решение.
По модулю умножаемые данные два числа равны положительным числам 3 и 5 . Их произведение дает в результате 15 . Отсюда следует, что произведение заданных чисел равно 15
Запишем кратко само умножение отрицательных чисел:
(- 3) · (- 5) = 3 · 5 = 15
Ответ: (- 3) · (- 5) = 15 .
При умножении отрицательных рациональных чисел, применив разобранное правило, можно мобилизоваться к умножению дробей, умножению смешанных чисел, умножению десятичных дробей.
Пример 2
Вычислить произведение (- 0 , 125) · (- 6) .
Решение.
Используя правило умножения отрицательных чисел, получим, что (− 0 , 125) · (− 6) = 0 , 125 · 6 . Для получения результата необходимо выполнить умножение десятичной дроби на натуральное число столбиков. Это выглядит так:
Получили, что выражение примет вид (− 0 , 125) · (− 6) = 0 , 125 · 6 = 0 , 75 .
Ответ: (− 0 , 125) · (− 6) = 0 , 75 .
В случае, когда множители – иррациональные числа, тогда их произведение может быть записано в виде числового выражения. Значение вычисляется только по необходимости.
Пример 3
Необходимо произвести умножение отрицательного - 2 на неотрицательное log 5 1 3 .
Решение
Находим модули заданных чисел:
2 = 2 и log 5 1 3 = - log 5 3 = log 5 3 .
Следуя из правил умножения отрицательных чисел, получим результат - 2 · log 5 1 3 = - 2 · log 5 3 = 2 · log 5 3 . Это выражение и является ответом.
Ответ: - 2 · log 5 1 3 = - 2 · log 5 3 = 2 · log 5 3 .
Для продолжения изучения темы необходимо повторить раздел умножение действительных чисел.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
§ 1 Умножение положительных и отрицательных чисел
В этом уроке познакомимся с правилами умножения и деления положительных и отрицательных чисел.
Известно, что любое произведение можно представить в виде суммы одинаковых слагаемых.
Cлагаемое -1 нужно сложить 6 раз:
(-1)+(-1)+(-1) +(-1) +(-1) + (-1) =-6
Значит произведение -1 и 6 равно -6.
Числа 6 и -6 -противоположные числа.
Таким образом, можно сделать вывод:
При умножении -1 на натуральное число получится противоположное ему число.
Для отрицательных чисел, так же как для положительных, выполняется переместительный закон умножения:
Если натуральное число умножить на -1, то также получится противоположное число
При умножении любого неотрицательного числа на 1 получится это же число.
Например:
Для отрицательных чисел данное утверждение тоже верно: -5 ∙1 = -5; -2 ∙ 1 = -2.
При умножении любого числа на 1 получится это же число.
Мы уже убедились, что при умножении минус 1 на натуральное число получится противоположное ему число. При умножении отрицательного числа данное утверждение тоже справедливо.
Например: (-1) ∙ (-4) = 4.
Также -1 ∙ 0 = 0, число 0 противоположно само себе.
При умножении любого числа на минус 1 получится противоположное ему число.
Перейдем к другим случаям умножения. Найдем произведение чисел -3 и 7.
Отрицательный множитель -3 можно заменить произведением -1 и 3. Тогда можно применить сочетательный закон умножения:
1 ∙ 21 = -21, т.е. произведение минус 3 и 7 равно минус 21.
При умножении двух чисел с разными знаками получается отрицательное число, модуль которого равен произведению модулей множителей.
А чему равно произведение чисел с одинаковыми знаками?
Мы знаем, что при умножении двух положительных чисел получится положительное число. Найдем произведение двух отрицательных чисел.
Заменим один из множителей произведением с множителем минус 1.
Применим выведенное нами правило, при умножении двух чисел с разными знаками получается отрицательное число, модуль которого равен произведению модулей множителей,
получится -80.
Сформулируем правило:
При умножении двух чисел с одинаковыми знаками получается положительное число, модуль которого равен произведению модулей множителей.
§ 2 Деление положительных и отрицательных чисел
Перейдем к делению.
Подбором найдем корни следующих уравнений:
y ∙ (-2) = 10. 5 ∙ 2 = 10, значит х = 5; 5 ∙ (-2) = -10, значит а = 5; -5 ∙ (-2) = 10, значит y = -5.
Запишем решения уравнений. В каждом уравнении неизвестен множитель. Неизвестный множитель находим, разделив произведение на известный множитель, значения неизвестных множителей мы уже подобрали.
Проанализируем.
При делении чисел с одинаковыми знаками (а это первое и второе уравнения) получается положительное число, модуль которого равен частному модулей делимого и делителя.
При делении чисел с разными знаками (это третье уравнение) получается отрицательное число, модуль которого равен частному модулей делимого и делителя. Т.е. при делении положительных и отрицательных чисел знак частного определяется по тем же правилам, что знак произведения. А модуль частного равен частному модулей делимого и делителя.
Таким образом, мы сформулировали правила умножения и деления положительных и отрицательных чисел.
Список использованной литературы:
- Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//автор-составитель Л.А. Топилина. – Мнемозина, 2009.
- Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И. Зубарева, А.Г. Мордкович. - М.: Мнемозина, 2013.
- Математика. 6 класс: учебник для учащихся общеобразовательных учреждений./Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2013.
- Справочник по математике - http://lyudmilanik.com.ua
- Справочник для учащихся в средней школе http://shkolo.ru
На этом уроке мы повторим правила сложения положительных и отрицательных чисел. Также научимся умножать числа с разными знаками и узнаем правила знаков для умножения. Рассмотрим примеры умножения положительных и отрицательных чисел.
Свойство умножения на ноль остается верным и в случае отрицательных чисел. Ноль умножить на любое число - будет ноль.
Список литературы
- Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
- Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия. 2006.
- Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Просвещение, 1989.
- Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - М.: ЗШ МИФИ, 2011.
- Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
- Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. - М.: Просвещение, Библиотека учителя математики, 1989.
Домашнее задание
- Интернет-портал Mnemonica.ru ().
- Интернет-портал Youtube.com ().
- Интернет-портал School-assistant.ru ().
- Интернет-портал Bymath.net ().
Класс: 6
«Знание – это набор фактов. Мудрость – умение их использовать»
Цель урока:
1) выведение правила умножения положительных и отрицательных чисел; способы применения этих правил в простейших случаях;
2) развитие умений сравнивать, выявлять закономерности, обобщать;
3) поиск различных способов и методов решения практических задач;
4) составить мини – проект. Информационный бюллетень.
Оборудование: модель термометра, карточки для взаимотренажера, проектер.
Ход урока
Приветствие. Узнать какую новую тему мы рассмотрим сегодня, нам поможет устный счет. Вычислите примеры, ответы замените буквами, используя «число – буква».
Слайд №1 Немного подумайте
Слайд №2 Кто это?
Индийский математик Брахмагупта, живший в VII веке, положительные числа представлял как «имущества», отрицательные числа как «долги».
Правила сложения положительных и отрицательных чисел он выражал так:
«Сумма двух имуществ – имущество»:
«Сумма двух долгов есть долг»:
А мы узнаем правило после того, как рассмотрим тему «Умножение отрицательных и положительных чисел»
Ваша задача научиться умножать положительные и отрицательные, а также перемножать отрицательные числа.
Мы составим мини – проект.
Мини-проект.
Информационный бюллетень
«Умножение положительных и отрицательных чисел»
Работа в группах (4 группы). (Действие помещаем в математический тренажер)
Задача 1 (1 группа)
Температура воздуха понижается каждый час на два градуса. Сейчас термометр показывает ноль градусов. Какую температуру он покажет через три часа? Изобразите это на координатной прямой. Приведите подобные примеры. Сделайте вывод и обобщите.
Решение:
Так как сейчас температура ноль градусов и за каждый час она понижается на 2 градуса, то за 3 часа она будет равна -6,
(-2)·3=-(2·3)=-6
Задача 1 (2 группа)
Температура воздуха понижается каждый час на два градуса. Сейчас термометр показывает ноль градусов. Какую температуру воздуха показывал термометр 3 часа назад? Изобразите это на координатной прямой. Сделайте вывод.
Решение:
Так как температура каждый час понижается на два градуса, а сейчас ноль градусов, то 3 часа назад она была равно +6.
(-2)·(-3)=2·3=6
Задача 1 (3 группа)
Фабрика выпускает в день 200 мужских костюмов. Когда стали выпускать костюмы нового фасона, расход ткани на один костюм изменила на -0,4 м2. На сколько изменился расход ткани на костюмы за день?
Решение:
Это значит, что расход ткани на костюмы за день изменился на – 80.
(-0,4)·200=-(0,4·200)=-80.
Задача 1 (4 группа)
Температура воздуха понижается каждый час на два градуса. Сейчас термометр показывает ноль градусов. Какую температуру воздуха показывал термометр 4 часа назад?
Решение:
Так как температура каждый час понижается на два градуса, а сейчас ноль градусов, то 4 часа назад она была равна +8, то есть
(-2)·(-4)=2·4=8
Выводы (учащиеся информацию заносят в макет информационного бюллетеня).
Слайд №4 Хорошенько подумайте
Первичное осмысление и применение изученного.
Работа с таблицей у доски и на местах (используя макет информационного бюллетеня).
Повторяем правило (вопросы задают ученики).
Работа с учебником:
- 1 ученик: №1105 (ж, з, и) 2 ученик: №1105 (к, л, м)
- № 1107 (работаем по группам) 1 группа: а), г);
2 группа: б), д);
3 группа: в), г).
Физкультминутка (2 мин.)
Повторяем правило на уравнение положительных и отрицательных чисел.
Слайд №5 Задача 2
Задание 2 (всем группам одинаковое).
Примените переместительное и сочетательное свойство, выполните произведение нескольких чисел и сделайте вывод:
Если число отрицательных множителей четное, то произведение – число _?_
Если число отрицательных множителей нечетное, то произведение – число _?_
Занести ещё одну информацию в макет информационного бюллетеня.
Слайд №6 Правило знаков.
Определите знак произведения:
1) «+»·«-»·«-»·«+»·«-»·«-»
2) «-»·«-»·«-»·«+»·«+»·
·«+»·«-»·«-»
3) «-»·«+»·«-»·«-»·«+»·«+»·
·«-»·«+»·«-»·«-»·«+»
Итак, пройдемся по всему бюллетеню и повторим правила применение их к решению заданий по карточки.
Тренажер (4 варианта).
Проверь себя.
Ответы к карточкам.
1 вариант | 2 вариант | 3 вариант | 4 вариант | |
1) | 18 | 20 | 24 | 18 |
2) | -20 | -18 | -18 | -24 |
3) | -24 | 16 | 24 | 18 |
4) | 15 | -15 | 1 | -2 |
5) | -4 | 0 | -5 | 0 |
6) | 0 | 2 | 2 | -5 |
7) | -1 | -3 | -1,5 | -3 |
8) | -0,8 | -3,5 | -4,8 | 3,6 |
Теперь давайте разберемся с умножением и делением .
Предположим, нам нужно умножить +3 на -4. Как это сделать?
Давайте рассмотрим такой случай. Три человека залезли в долги, и у каждого по 4 доллара долга. Чему равен общий долг? Для того чтобы его найти, надо сложить все три долга: 4 доллара + 4 доллара + 4 доллара = 12 долларов. Мы с вами решили, что сложение трех чисел 4 обозначается как 3×4. Поскольку в данном случае мы говорим о долге, перед 4 стоит знак «-». Мы знаем, что общий долг равен 12 долларам, так что теперь наша задача имеет вид 3х(-4)=-12.
Мы получим тот же результат, если по условию задачи каждый из четырех человек имеет долг по 3 доллара. Другими словами, (+4)х(-3)=-12. А поскольку порядок сомножителей значения не имеет, получаем (-4)х(+3)=-12 и (+4)х(-3)=-12.
Давайте обобщим результаты. При перемножении одного положительного и одного отрицательного числа результат всегда будет отрицательным числом . Численная величина ответа будет той же самой, как и в случае положительных чисел. Произведение (+4)х(+3)=+12. Присутствие знака «-» влияет только на знак, но не влияет на численную величину.
А как перемножить два отрицательных числа?
К сожалению, на эту тему очень трудно придумать подходящий пример из жизни. Легко себе представить долг в сумме 3 или 4 доллара, но совершенно невозможно вообразить -4 или -3 человека, которые залезли в долги.
Пожалуй, мы пойдем другим путем. В умножении при изменении знака одного из множителей меняется знак произведения. Если мы меняем знаки у обоих множителей, мы должны дважды сменить знак произведения , сначала с положительного на отрицательный, а затем наоборот, с отрицательного на положительный, то есть у произведения будет первоначальный знак.
Следовательно, вполне логично, хотя немного странно, что (-3)х(-4)=+12.
Положение знака при умножении изменяется таким образом:
- положительное число х положительное число = положительное число;
- отрицательное число х положительное число = отрицательное число;
- положительное число х отрицательное число = отрицательное число;
- отрицательное число х отрицательное число = положительное число.
Иначе говоря, перемножая два числа с одинаковыми знаками, мы получаем положительное число . Перемножая два числа с разными знаками, мы получаем отрицательное число .
Такое же правило справедливо и для действия противоположного умножению – для .
Вы легко можете в этом убедиться, проведя обратные операции умножения . Если в каждом из примеров, приведенных выше, вы умножите частное на делитель, то получите делимое, и убедитесь, что оно имеет тот же самый знак, например (-3)х(-4)=(+12).
Поскольку скоро зима, то пора уже подумать о том, в что переобуть своего железного коня, что бы не скользить по льду и чувствовать себя уверено на зимних дорогах. Можно, например, взять шины йокогама на сайте: mvo.ru или какие-то другие, главное, что бы качественный, больше информации и цены вы можете узнать на сайте Mvo.ru.