Если вариационный ряд имеет вид. Группировка данных и построение ряда распределения

Если вариационный ряд имеет вид. Группировка данных и построение ряда распределения

💖 Нравится? Поделись с друзьями ссылкой

Пример решения контрольной работы по математической статистике

Задача 1

Исходные данные : студенты некоторой группы, состоящей из 30 человек сдали экзамен по курсу «Информатика». Полученные студентами оценки образуют следующий ряд чисел:

I. Составим вариационный ряд

m x

w x

m x нак

w x нак

Итого:

II. Графическое представление статистических сведений.

III. Числовые характеристики выборки.

1. Среднее арифметическое

2. Среднее геометрическое

3. Мода

4. Медиана

222222333333333 | 3 34444444445555

5. Выборочная дисперсия

7. Коэффициент вариации

8. Ассиметрия

9. Коэффициент ассиметрии

10. Эксцесс

11. Коэффициент эксцесса

Задача 2

Исходные данные : студенты некоторой группы написали выпускную контрольную работу. Группа состоит из 30 человек. Набранные студентами баллы образуют следующий ряд чисел

Решение

I. Так как признак принимает много различных значений, то для него построим интервальный вариационный ряд. Для этого сначала зададим величину интервала h . Воспользуемся формулой Стэрджера

Составим шкалу интервалов. При этом за верхнюю границу первого интервала примем величину, определяемую по формуле:

Верхние границы последующих интервалов определим по следующей рекуррентной формуле:

, тогда

Построение шкалы интервалов заканчиваем, так как верхняя граница очередного интервала стала больше или равна максимальному значению выборки
.

II. Графическое отображение интервального вариационного ряда

III. Числовые характеристики выборки

Для определения числовых характеристик выборки составим вспомогательную таблицу

Сумма :

1. Среднее арифметическое

2. Среднее геометрическое

3. Мода

4. Медиана

10 11 12 12 13 13 13 13 14 14 14 14 15 15 15 |15 15 15 16 16 16 16 16 17 17 18 19 19 20 20

5. Выборочная дисперсия

6. Выборочное стандартное отклонение

7. Коэффициент вариации

8. Ассиметрия

9. Коэффициент ассиметрии

10. Эксцесс

11. Коэффициент эксцесса

Задача 3

Условие : цена деления шкалы амперметра равна 0,1 А. Показания округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0,02 А.

Решение.

Ошибку округления отсчета можно рассматривать как случайную величину Х , которая распределена равномерно в интервале между двумя соседними целыми делениями. Плотность равномерного распределения

,

где
- длина интервала, в котором заключены возможные значения Х ; вне этого интервала
В данной задаче длина интервала, в котором заключены возможные значения Х , равна 0,1, поэтому

Ошибка отсчета превысит 0,02 если она будет заключена в интервале (0,02; 0,08). Тогда

Ответ: р =0,6

Задача 4

Исходные данные: математическое ожидание и стандартное отклонение нормально распределенного признака Х соответственно равны 10 и 2. Найти вероятность того, чтов результате испытания Х примет значение, заключенное в интервале (12, 14).

Решение.

Воспользуемся формулой

И теоретическими частотами

Решение

Для Х ее математическое ожидание M(X) и дисперсию D(X). Решение . Найдем функцию распределения F(x) случайной величины... ошибка выборки). Составим вариационный ряд Ширина интервала составит : Для каждого значения ряда подсчитаем, какое количество...

  • Решение: уравнение с разделяющимися переменными

    Решение

    В виде Для нахождения частного решения неоднородного уравнения составим систему Решим полученную систему... ; +47; +61; +10; -8. Построить интервальный вариационный ряд . Дать статистические оценки среднего значения...

  • Решение: Проведем расчет цепных и базисных абсолютных приростов, темпов роста, темпов прироста. Полученные значения сведем в таблицу 1

    Решение

    Объем производства продукции. Решение : Средняя арифметическая интервального вариационного ряда вычисляется следующим образом: за... Предельная ошибка выборки с вероятностью 0,954 (t=2) составит : Δ w = t*μ = 2*0,0146 = 0,02927 Определим границы...

  • Решение. Признак

    Решение

    О трудовом стаже которых и составили выборку. Средний по выборке стаж... рабочего дня этих сотрудников и составили выборку. Средняя по выборке продолжительность... 1,16, уровень значимости α = 0,05. Решение . Вариационный ряд данной выборки имеет вид: 0,71 ...

  • Рабочая учебная программа по биологии для 10-11 классов Составитель: Поликарпова С. В

    Рабочая учебная программа

    Простейших схем скрещивания» 5 Л.р. «Решение элементарных генетических задач» 6 Л.р. «Решение элементарных генетических задач» 7 Л.р. « ... , 110, 115, 112, 110. Составьте вариационный ряд , начертите вариационную кривую, найдите среднюю величину признака...

  • Совокупность значений изученного в данном эксперименте или наблюдении параметра, проранжированных по величине (возрастания или убывания) называется вариационным рядом.

    Предположим, что мы измерили артериальное давление у десяти пациентов с целью получить верхний порог АД: систолическое давление, т.е. только одно число.

    Представим, что серия наблюдений (статистическая совокупность) артериального систолического давления в 10-ти наблюдениях имеет следующий вид (табл. 1):

    Таблица 1

    Составляющие вариационного ряда называются вариантами. Варианты представляют собой числовое значение изучаемого признака.

    Построение из статистической совокупности наблюдений вариационного ряда - только первый шаг к осмыслению особенностей всей совокупности. Далее необходимо определить средний уровень изучаемого количественного признака (средний уровень белка крови, средний вес пациентов, среднее время наступления наркоза и т.д.)

    Средний уровень измеряют с помощью критериев, которые носят название средних величин. Средняя величина - обобщающая числовая характеристика качественно однородных величин, характеризующая одним числом всю статистическую совокупность по одному признаку. Средняя величина выражает то общее, что характерно для признака в данной совокупности наблюдений.

    Общеупотребительными являются три вида средних величин: мода (), медиана () и среднеарифметическая величина ().

    Для определения любой средней величины необходимо использовать результаты индивидуальных наблюдений, записав их в виде вариационного ряда (табл. 2).

    Мода - значение, наиболее часто встречающееся в серии наблюдений. В нашем примере мода = 120. Если в вариационном ряду нет повторяющихся значений, то говорят, что мода отсутствует. Если несколько значений повторяются одинаковое количество раз, то в качестве моды берут наименьшее из них.

    Медиана - значение, делящее распределение на две равные части, центральное или срединное значение серии наблюдений, упорядоченных по возрастанию или убыванию. Так, если в вариационном ряду 5 значений, то его медиана равна третьему члену вариационного ряда, если в ряду четное количество членов, то медиана представляет собой среднее арифметическое двух его центральных наблюдений, т.е. если в ряду 10 наблюдений, то медиана равна среднему арифметическому 5 и 6 наблюдения. В нашем примере.

    Заметим важную особенность моды и медианы: на их величины не оказывают влияние числовые значения крайних вариант.

    Средняя арифметическая величина рассчитывается по формуле:

    где - наблюденная величина в -том наблюдении, а - число наблюдений. Для нашего случая.

    Средняя арифметическая величина обладает тремя свойствами:

    Средняя занимает серединное положение в вариационном ряду. В строго симметричном ряду.

    Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных. Она отражает то типичное, что характерно для всей совокупности.

    Сумма отклонений всех вариант от средней равна нулю: . Отклонение вариант от средней обозначается.

    Вариационный ряд состоит из вариант и соответствующих им частот. Из десяти полученных значений цифра 120 встретилась 6 раз, 115 - 3 раза, 125 - 1 раз. Частота () - абсолютная численность отдельных вариант в совокупности, указывающая, сколько раз встречается данная варианта в вариационном ряду.

    Вариационный ряд может быть простым (частоты = 1) или сгруппированным укороченным, по 3-5 вариант. Простой ряд используется при малом числе наблюдений (), сгруппированный - при большом числе наблюдений ().

    РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ при ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

    ОРЛОВСКИЙ ФИЛИАЛ

    кафедра математики и математических методов в управлении

    Самостоятельная работа

    По математике

    на тему «Вариационный ряд и его характеристики»

    для студентов очного отделения факультета «Экономика и менеджмент»

    направления подготовки «Управление персоналом»


    Цель работы: Освоение понятий математической статистики и приемов первичной обработки данных.

    Пример решения типовых задач.

    Задача 1.

    Путем опроса получены следующие данные ():

    1 2 3 2 2 4 3 3 5 1 0 2 4 3 2 2 3 3 1 3 2 4 2 4 3 3 3 2 0 6

    3 3 1 1 2 3 1 4 3 1 7 4 3 4 2 3 2 3 3 1 4 3 1 4 5 3 4 2 4 5

    3 6 4 1 3 2 4 1 3 1 0 0 4 6 4 7 4 1 3 5

    Необходимо:

    1) Составить вариационный ряд (статистическое распределение выборки), предварительно записав ранжированный дискретный ряд вариантов.

    2) Построить полигон частот и кумуляту.

    3) Составить ряд распределения относительных частот (частостей).

    4) Найти основные числовые характеристики вариационного ряда (использовать упрощенные формулы для их нахождения): а) среднюю арифметическую , б) медиану Ме и моду Мо , в) дисперсию s 2 , г) среднее квадратическое отклонение s , д) коэффициент вариации V .

    5) Пояснить смысл полученных результатов.

    Решение.

    1) Для составления ранжированного дискретного ряда вариантов отсортируем данные опроса по величине и расположим их в порядке возрастания

    0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

    3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

    5 5 5 5 6 6 6 7 7.

    Составим вариационный ряд, записав в первую строку таблицы наблюдаемые значения (варианты), а во вторую соответствующие им частоты (таблица 1)

    Таблица 1.

    2) Полигон частот представляет собой ломаную, соединяющую точки (х i ; n i ), i =1, 2,…, m , где m X .

    Изобразим полигон частот вариационного ряда (рис. 1).

    Рис.1. Полигон частот

    Кумулятивная кривая (кумулята) для дискретного вариационного ряда представляет ломаную, соединяющую точки (х i ; n i нак ), i =1, 2,…, m .

    Найдем накопленные частоты n i нак (накопленная частота показывает, сколько наблюдалось вариантов со значением признака меньшим х ). Найденные значения заносим в третью строку таблицы 1.



    Построим кумуляту (рис. 2).

    Рис.2. Кумулята

    3) Найдем относительные частоты (частости) , где , где m – число различных значений признака X , которые будем вычислять с одинаковой точностью.

    Запишем ряд распределения относительных частот (частостей) в виде таблицы 2

    Таблица 2

    4) Найдем основные числовые характеристики вариационного ряда:

    а) Среднюю арифметическую найдем, используя упрощенную формулу:

    ,

    где - условные варианты

    Положим с = 3 (одно из средних наблюдаемых значений), k = 1 (разность между двумя соседними вариантами) и составим расчетную таблицу (табл. 3).

    Таблица 3.

    x i n i u i u i n i u i 2 n i
    -3 -12
    -2 -26
    -1 -14
    Сумма -11

    Тогда средняя арифметическая

    б) Медианой Ме вариационного ряда называется значение признака, приходящееся на середину ранжированного ряда наблюдений. Данный дискретный вариационный ряд содержит четное число членов (n =80), значит, медиана равна полусумме двух серединных вариантов.

    Модой Мо вариационного ряда называется вариант, которому соответствует наибольшая частота. Для данного вариационного ряда наибольшая частота n max = 24 соответствует варианту х = 3, значит мода Мо =3.

    в) Дисперсию s 2 , которая является мерой рассеяния возможных значений показателя X вокруг своего среднего значения, найдем, используя упрощенную формулу:

    , где u i – условные варианты

    Промежуточные вычисления также занесем в таблицу 3.

    Тогда дисперсия

    г) Среднее квадратическое отклонение s найдем по формуле:

    .

    д) Коэффициент вариации V : (),

    Коэффициент вариации является безмерной величиной, поэтому он пригоден для сравнения рассеяния вариационных рядов, варианты которых имеют различную размерность.

    Коэффициент вариации

    .

    5) Смысл полученных результатов заключается в том, что величина характеризует среднее значение признака X в пределах рассматриваемой выборки, то есть среднее значение составило 2,86. Среднее квадратическое отклонение s описывает абсолютный разброс значений показателя X и в данном случае составляет s ≈ 1,55. Коэффициент вариации V характеризует относительную изменчивость показателя X , то есть относительный разброс вокруг его среднего значения , и в данном случае составляет .

    Ответ: ; ; ; .

    Задача 2.

    Имеются следующие данные о собственном капитале 40 крупнейших банков Центральной России:

    12,0 49,4 22,4 39,3 90,5 15,2 75,0 73,0 62,3 25,2
    70,4 50,3 72,0 71,6 43,7 68,3 28,3 44,9 86,6 61,0
    41,0 70,9 27,3 22,9 88,6 42,5 41,9 55,0 56,9 68,1
    120,8 52,4 42,0 119,3 49,6 110,6 54,5 99,3 111,5 26,1

    Необходимо:

    1) Построить интервальный вариационный ряд.

    2) Вычислить среднюю выборочную и выборочную дисперсию

    3) Найти среднее квадратическое отклонение, и коэффициент вариации.

    4) Построить гистограмму частот распределения.

    Решение.

    1) Выберем произвольное число интервалов, например, 8. Тогда ширина интервала:

    .

    Составим расчетную таблицу:

    Интервал вариант, х k –x k +1 Частота, n i Середина интервала х i Условная варианта, и i и i n i и i 2 n i (и i + 1) 2 n i
    10 – 25 17,5 – 3 – 12
    25 – 40 32,5 – 2 – 10
    40 – 55 47,5 – 1 – 11
    55 – 70 62,5
    70 – 85 77,5
    85 – 100 92,5
    100 – 115 107,5
    115 – 130 122,5
    Сумма – 5

    В качестве ложного нуля выбрано значение с= 62,5(эта варианта расположена примерно в середине вариационного ряда).

    Условные варианты определяются по формуле

    Ряды, построенные по количественному признаку , называются вариационным .

    Ряды распределений состоят из вариантов (значений признака) и частот (численности групп). Частоты, выраженные в виде относительных величин (долей, процентов) называются частостями . Сумма всех частот называется объёмом ряда распределения.

    По виду ряды распределения делятся на дискретные (построены по прерывным значениям признака) и интервальные (построены на непрерывных значениях признака).

    Вариационный ряд представляет собой две колонки (или строки); в одной из которых приводятся отдельные значения варьирующего признака, именуемые вариантами и обозначаемые Х; а в другой – абсолютные числа, показывающие сколько раз (как часто) встречается каждый вариант. Показатели второй колонки называются частотами и условно обозначают через f. Еще раз заметим, что во второй колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуются частостями и условно обозначают через ω Сумма всех частостей в этом случае равна единице. Однако частоты можно выражать и в процентах, и тогда сумма всех частостей дает 100%.

    Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд именуют дискретным.

    Для непрерывных признаков вариационные ряды строятся как интервальные , то есть значения признака в них выражаются «от… до …». При этом минимальны значения признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей.

    Интервальные вариационные ряды строят и для дискретных признаков, варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами.

    Рассмотрим как определяется величина равных интервалов. Введем следующие обозначения:

    i – величина интервала;

    - максимальное значение признака у единиц совокупности;

    – минимальное значение признака у единиц совокупности;

    n – число выделяемых групп.

    , если n известно.

    Если число выделяемых групп трудно заранее определить, то для расчета оптимальной величины интервала при достаточном объеме совокупности может быть рекомендована формула, предложенная Стерджессом в 1926 году:

    n = 1+ 3.322 lg N, где N – число единиц в совокупности.

    Величина неравных интервалов определяется в каждом отдельном случае с учетом особенностей объекта изучения.

    Статистическим распределением выборки называют перечень ва­риант и соответствующих им частот (или относительных частот).

    Статистическое распределение выборки можно задать в виде таблицы, в первой графе которой располагаются варианты, а во второй - соот­ветствующие этим вариантам частоты ni , или относительные частоты Pi .

    Статистическое распределение выборки

    Интервальными называются вариационные ряды, в которых значе­ния признаков, положенных в основу их образования, выражены в определенных пределах (интервалах). Частоты в этом случае относятся, не к отдельным значениям признака, а ко всему интервалу.

    Интервальные ряды распределения строятся по непрерывным количе­ственным признакам, а также по дискретным признакам, варьирующим в значительных пределах.

    Интервальный ряд можно представить статистическим распределени­ем выборки с указанием интервалов и соответствующих им частот. При этом в качестве частоты интервала принимают сумму частот вариант, по­павших в этот интервал.

    При группировке по количественным непрерывным признакам важ­ное значение имеет определение размера интервала.

    Кроме выборочной средней и выборочной дисперсии применяются и другие характеристики вариационного ряда.

    Модой называют варианту, которая имеет наибольшую частоту.

    Статистический ряд распределения – это упорядоченное распределение единиц совокупности на группы по определённому варьирующему признаку.
    В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения .

    Наличие общего признака является основой для образования статистической совокупности, которая представляет собой результаты описания или измерения общих признаков объектов исследования.

    Предметом изучения в статистике являются изменяющиеся (варьирующие) признаки или статистические признаками.

    Виды статистических признаков .

    Атрибутивными называют ряды распределения , построенные по качественным признакам. Атрибутивный – это признак, имеющий наименование, (например профессия: швея, учитель и т.д.).
    Ряд распределения принято оформлять в виде таблиц. В табл. 2.8 приведён атрибутивный ряд распределения.
    Таблица 2.8 - Распределение видов юридической помощи, оказанной адвокатами гражданам одного из регионов РФ.

    Вариационный ряд – это значения признака (или интервалы значений) и их частоты.
    Вариационными рядами называют ряды распределения , построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот.
    Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду.
    Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, её объём.
    Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100 %. Вариационный ряд позволяет по фактическим данным оценить форму закона распределения.

    В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды .
    Пример дискретного вариационного ряда приведен в табл. 2.9.
    Таблица 2.9 - Распределение семей по числу занимаемых комнат в отдельных квартирах в 1989 г. в РФ.

    В первой колонке таблицы представлены варианты дискретного вариационного ряда, во второй – помещены частоты вариационного ряда, в третьей – показатели частости.

    Вариационный ряд

    В генеральной совокупности исследуется некоторый количественный признак. Из нее случайным образом извлекается выборка объема n , то есть число элементов выборки равно n . На первом этапе статистической обработки производят ранжирование выборки, т.е. упорядочивание чисел x 1 , x 2 , …, x n по возрастанию. Каждое наблюдаемое значение x i называется вариантой . Частота m i – это число наблюдений значения x i в выборке. Относительная частота (частость) w i – это отношение частоты m i к объему выборкиn : .
    При изучении вариационного ряда также используют понятия накопленной частоты и накопленной частости. Пусть x некоторое число. Тогда количество вариантов, значения которых меньше x , называется накопленной частотой: для x i n называется накопленной частостью w i max .
    Признак называется дискретно варьируемым, если его отдельные значения (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число). Вариационный ряд такого признака называется дискретным вариационным рядом.

    Таблица 1. Общий вид дискретного вариационного ряда частот

    Значения признака x i x 1 x 2 x n
    Частоты m i m 1 m 2 m n

    Признак называется непрерывно варьирующим, если его значения отличаются друг от друга на сколь угодно малую величину, т.е. признак может принимать любые значения в некотором интервале. Непрерывный вариационный ряд для такого признака называется интервальным.

    Таблица 2. Общий вид интервального вариационного ряда частот

    Таблица 3. Графические изображения вариационного ряда

    Ряд Полигон или гистограмма Эмпирическая функция распределения
    Дискретный
    Интервальный
    Просматривая результаты проведенных наблюдений, определяют, сколько значений вариантов попало в каждый конкретный интервал. Предполагается, что каждому интервалу принадлежит один из его концов: либо во всех случаях левые (чаще), либо во всех случаях правые, а частоты или частости показывают число вариантов, заключенных в указанных границах. Разности a i – a i +1 называются частичными интервалами. Для упрощения последующих расчетов интервальный вариационный ряд можно заменить условно дискретным. В этом случае серединное значение i -го интервала принимают за вариант x i , а соответствующую интервальную частоту m i – за частоту этого интервала.
    Для графического изображения вариационных рядов наиболее часто используются полигон, гистограмма, кумулятивная кривая и эмпирическая функция распределения.

    В табл. 2.3 (Группировка населения России по размеру среднедушевого дохода в апреле 1994г.) представлен интервальный вариационный ряд .
    Удобно ряды распределения анализировать при помощи графического изображения, позволяющего судить и о форме распределения. Наглядное представление о характере изменения частот вариационного ряда дают полигон и гистограмма .
    Полигон используется при изображении дискретных вариационных рядов .
    Изобразим, например графически распределение жилого фонда по типу квартир, (табл. 2.10).
    Таблица 2.10 - Распределение жилого фонда городского района по типу квартир (цифры условные).


    Рис. Полигон распределения жилого фонда


    На оси ординат могут наноситься не только значения частот, но и частостей вариационного ряда.
    Гистограмма принимается для изображения интервального вариационного ряда . При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам. Гистограмма – график, на котором ряд изображен в виде смежных друг с другом столбиков.
    Изобразим графически интервальный ряд распределения, приведённый в табл. 2.11.
    Таблица 2.11 - Распределение семей по размеру жилой площади, приходящейся на одного человека (цифры условные).
    N п/п Группы семей по размеру жилой площади, приходящейся на одного человека Число семей с данным размером жилой площади Накопленное число семей
    1 3 – 5 10 10
    2 5 – 7 20 30
    3 7 – 9 40 70
    4 9 – 11 30 100
    5 11 – 13 15 115
    ВСЕГО 115 ----


    Рис. 2.2. Гистограмма распределения семей по размеру жилой площади, приходящейся на одного человека


    Используя данные накопленного ряда (табл. 2.11), построим кумуляту распределения.


    Рис. 2.3. Кумулята распределения семей по размеру жилой площади, приходящейся на одного человека


    Изображение вариационного ряда в виде кумуляты особенно эффективно для вариационных рядов, частоты которых выражены в долях или процентах к сумме частот ряда.
    Если при графическом изображении вариационного ряда в виде кумуляты оси поменять, то мы получим огиву . На рис. 2.4 приведена огива, построенная на основе данных табл. 2.11.
    Гистограмма может быть преобразована в полигон распределения, если найти середины сторон прямоугольников и затем эти точки соединить прямыми линиями. Полученный полигон распределения изображён на рис. 2.2 пунктирной линией.
    При построении гистограммы распределения вариационного ряда с неравными интервалами по оси ординат наносят не частоты, а плотность распределения признака в соответствующих интервалах.
    Плотность распределения – это частота, рассчитанная на единицу ширины интервала, т.е. сколько единиц в каждой группе приходится на единицу величины интервала. Пример расчета плотности распределения представлен в табл. 2.12.
    Таблица 2.12 - Распределение предприятий по числу занятых (цифры условные)
    N п/п Группы предприятий по числу занятых, чел. Число предприятий Величина интервала, чел. Плотность распределения
    А 1 2 3=1/2
    1 До 20 15 20 0,75
    2 20 – 80 27 60 0,25
    3 80 – 150 35 70 0,5
    4 150 – 300 60 150 0,4
    5 300 – 500 10 200 0,05
    ВСЕГО 147 ---- ----

    Для графического изображения вариационных рядов может также использоваться кумулятивная кривая . При помощи кумуляты (кривой сумм) изображается ряд накопленных частот. Накопленные частоты определяются путём последовательно суммирования частот по группам и показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение.


    Рис. 2.4. Огива распределения семей по размеру жилой площади, приходящейся на одного человека

    При построении кумуляты интервального вариационного ряда по оси абсцисс откладываются варианты ряда, а по оси ординат накопленные частоты.

    Непрерывный вариационный ряд

    Непрерывный вариационный ряд - ряд, построенный на основе количественного статистического признака . Пример . Средняя продолжительность заболеваний осужденных (дней на одного человека) в осенне-зимний период в текущем год составила:
    7,0 6,0 5,9 9,4 6,5 7,3 7,6 9,3 5,8 7,2
    7,1 8,3 7,5 6,8 7,1 9,2 6,1 8,5 7,4 7,8
    10,2 9,4 8,8 8,3 7,9 9,2 8,9 9,0 8,7 8,5
    Рассказать друзьям