Как составить интервальный вариационный ряд. Пример решения типовых задач

Как составить интервальный вариационный ряд. Пример решения типовых задач

💖 Нравится? Поделись с друзьями ссылкой

РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ при ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОРЛОВСКИЙ ФИЛИАЛ

кафедра математики и математических методов в управлении

Самостоятельная работа

По математике

на тему «Вариационный ряд и его характеристики»

для студентов очного отделения факультета «Экономика и менеджмент»

направления подготовки «Управление персоналом»


Цель работы: Освоение понятий математической статистики и приемов первичной обработки данных.

Пример решения типовых задач.

Задача 1.

Путем опроса получены следующие данные ():

1 2 3 2 2 4 3 3 5 1 0 2 4 3 2 2 3 3 1 3 2 4 2 4 3 3 3 2 0 6

3 3 1 1 2 3 1 4 3 1 7 4 3 4 2 3 2 3 3 1 4 3 1 4 5 3 4 2 4 5

3 6 4 1 3 2 4 1 3 1 0 0 4 6 4 7 4 1 3 5

Необходимо:

1) Составить вариационный ряд (статистическое распределение выборки), предварительно записав ранжированный дискретный ряд вариантов.

2) Построить полигон частот и кумуляту.

3) Составить ряд распределения относительных частот (частостей).

4) Найти основные числовые характеристики вариационного ряда (использовать упрощенные формулы для их нахождения): а) среднюю арифметическую , б) медиану Ме и моду Мо , в) дисперсию s 2 , г) среднее квадратическое отклонение s , д) коэффициент вариации V .

5) Пояснить смысл полученных результатов.

Решение.

1) Для составления ранжированного дискретного ряда вариантов отсортируем данные опроса по величине и расположим их в порядке возрастания

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 6 6 6 7 7.

Составим вариационный ряд, записав в первую строку таблицы наблюдаемые значения (варианты), а во вторую соответствующие им частоты (таблица 1)

Таблица 1.

2) Полигон частот представляет собой ломаную, соединяющую точки (х i ; n i ), i =1, 2,…, m , где m X .

Изобразим полигон частот вариационного ряда (рис. 1).

Рис.1. Полигон частот

Кумулятивная кривая (кумулята) для дискретного вариационного ряда представляет ломаную, соединяющую точки (х i ; n i нак ), i =1, 2,…, m .

Найдем накопленные частоты n i нак (накопленная частота показывает, сколько наблюдалось вариантов со значением признака меньшим х ). Найденные значения заносим в третью строку таблицы 1.



Построим кумуляту (рис. 2).

Рис.2. Кумулята

3) Найдем относительные частоты (частости) , где , где m – число различных значений признака X , которые будем вычислять с одинаковой точностью.

Запишем ряд распределения относительных частот (частостей) в виде таблицы 2

Таблица 2

4) Найдем основные числовые характеристики вариационного ряда:

а) Среднюю арифметическую найдем, используя упрощенную формулу:

,

где - условные варианты

Положим с = 3 (одно из средних наблюдаемых значений), k = 1 (разность между двумя соседними вариантами) и составим расчетную таблицу (табл. 3).

Таблица 3.

x i n i u i u i n i u i 2 n i
-3 -12
-2 -26
-1 -14
Сумма -11

Тогда средняя арифметическая

б) Медианой Ме вариационного ряда называется значение признака, приходящееся на середину ранжированного ряда наблюдений. Данный дискретный вариационный ряд содержит четное число членов (n =80), значит, медиана равна полусумме двух серединных вариантов.

Модой Мо вариационного ряда называется вариант, которому соответствует наибольшая частота. Для данного вариационного ряда наибольшая частота n max = 24 соответствует варианту х = 3, значит мода Мо =3.

в) Дисперсию s 2 , которая является мерой рассеяния возможных значений показателя X вокруг своего среднего значения, найдем, используя упрощенную формулу:

, где u i – условные варианты

Промежуточные вычисления также занесем в таблицу 3.

Тогда дисперсия

г) Среднее квадратическое отклонение s найдем по формуле:

.

д) Коэффициент вариации V : (),

Коэффициент вариации является безмерной величиной, поэтому он пригоден для сравнения рассеяния вариационных рядов, варианты которых имеют различную размерность.

Коэффициент вариации

.

5) Смысл полученных результатов заключается в том, что величина характеризует среднее значение признака X в пределах рассматриваемой выборки, то есть среднее значение составило 2,86. Среднее квадратическое отклонение s описывает абсолютный разброс значений показателя X и в данном случае составляет s ≈ 1,55. Коэффициент вариации V характеризует относительную изменчивость показателя X , то есть относительный разброс вокруг его среднего значения , и в данном случае составляет .

Ответ: ; ; ; .

Задача 2.

Имеются следующие данные о собственном капитале 40 крупнейших банков Центральной России:

12,0 49,4 22,4 39,3 90,5 15,2 75,0 73,0 62,3 25,2
70,4 50,3 72,0 71,6 43,7 68,3 28,3 44,9 86,6 61,0
41,0 70,9 27,3 22,9 88,6 42,5 41,9 55,0 56,9 68,1
120,8 52,4 42,0 119,3 49,6 110,6 54,5 99,3 111,5 26,1

Необходимо:

1) Построить интервальный вариационный ряд.

2) Вычислить среднюю выборочную и выборочную дисперсию

3) Найти среднее квадратическое отклонение, и коэффициент вариации.

4) Построить гистограмму частот распределения.

Решение.

1) Выберем произвольное число интервалов, например, 8. Тогда ширина интервала:

.

Составим расчетную таблицу:

Интервал вариант, х k –x k +1 Частота, n i Середина интервала х i Условная варианта, и i и i n i и i 2 n i (и i + 1) 2 n i
10 – 25 17,5 – 3 – 12
25 – 40 32,5 – 2 – 10
40 – 55 47,5 – 1 – 11
55 – 70 62,5
70 – 85 77,5
85 – 100 92,5
100 – 115 107,5
115 – 130 122,5
Сумма – 5

В качестве ложного нуля выбрано значение с= 62,5(эта варианта расположена примерно в середине вариационного ряда).

Условные варианты определяются по формуле

Совокупность значений изученного в данном эксперименте или наблюдении параметра, проранжированных по величине (возрастания или убывания) называется вариационным рядом.

Предположим, что мы измерили артериальное давление у десяти пациентов с целью получить верхний порог АД: систолическое давление, т.е. только одно число.

Представим, что серия наблюдений (статистическая совокупность) артериального систолического давления в 10-ти наблюдениях имеет следующий вид (табл. 1):

Таблица 1

Составляющие вариационного ряда называются вариантами. Варианты представляют собой числовое значение изучаемого признака.

Построение из статистической совокупности наблюдений вариационного ряда - только первый шаг к осмыслению особенностей всей совокупности. Далее необходимо определить средний уровень изучаемого количественного признака (средний уровень белка крови, средний вес пациентов, среднее время наступления наркоза и т.д.)

Средний уровень измеряют с помощью критериев, которые носят название средних величин. Средняя величина - обобщающая числовая характеристика качественно однородных величин, характеризующая одним числом всю статистическую совокупность по одному признаку. Средняя величина выражает то общее, что характерно для признака в данной совокупности наблюдений.

Общеупотребительными являются три вида средних величин: мода (), медиана () и среднеарифметическая величина ().

Для определения любой средней величины необходимо использовать результаты индивидуальных наблюдений, записав их в виде вариационного ряда (табл. 2).

Мода - значение, наиболее часто встречающееся в серии наблюдений. В нашем примере мода = 120. Если в вариационном ряду нет повторяющихся значений, то говорят, что мода отсутствует. Если несколько значений повторяются одинаковое количество раз, то в качестве моды берут наименьшее из них.

Медиана - значение, делящее распределение на две равные части, центральное или срединное значение серии наблюдений, упорядоченных по возрастанию или убыванию. Так, если в вариационном ряду 5 значений, то его медиана равна третьему члену вариационного ряда, если в ряду четное количество членов, то медиана представляет собой среднее арифметическое двух его центральных наблюдений, т.е. если в ряду 10 наблюдений, то медиана равна среднему арифметическому 5 и 6 наблюдения. В нашем примере.

Заметим важную особенность моды и медианы: на их величины не оказывают влияние числовые значения крайних вариант.

Средняя арифметическая величина рассчитывается по формуле:

где - наблюденная величина в -том наблюдении, а - число наблюдений. Для нашего случая.

Средняя арифметическая величина обладает тремя свойствами:

Средняя занимает серединное положение в вариационном ряду. В строго симметричном ряду.

Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных. Она отражает то типичное, что характерно для всей совокупности.

Сумма отклонений всех вариант от средней равна нулю: . Отклонение вариант от средней обозначается.

Вариационный ряд состоит из вариант и соответствующих им частот. Из десяти полученных значений цифра 120 встретилась 6 раз, 115 - 3 раза, 125 - 1 раз. Частота () - абсолютная численность отдельных вариант в совокупности, указывающая, сколько раз встречается данная варианта в вариационном ряду.

Вариационный ряд может быть простым (частоты = 1) или сгруппированным укороченным, по 3-5 вариант. Простой ряд используется при малом числе наблюдений (), сгруппированный - при большом числе наблюдений ().

Группировка – это разбиение совокупности на группы, однородные по какому-либо признаку.

Назначение сервиса . С помощью онлайн-калькулятора Вы сможете:

  • построить вариационный ряд , построить гистограмму и полигон;
  • найти показатели вариации (среднюю, моду (в т.ч. и графическим способом), медиану, размах вариации, квартили, децили, квартильный коэффициент дифференциации, коэффициент вариации и другие показатели);

Инструкция . Для группировки ряда необходимо выбрать вид получаемого вариационного ряда (дискретный или интервальный) и указать количество данных (количество строк). Полученное решение сохраняется в файле Word (см. пример группировки статистических данных).

Если группировка уже осуществлена и заданы дискретный вариационный ряд или интервальный ряд , то необходимо воспользоваться онлайн-калькулятором Показатели вариации . Проверка гипотезы о виде распределения производится с помощью сервиса Изучение формы распределения .

Виды статистических группировок

Вариационный ряд . В случае наблюдений дискретной случайной величины одно и то же значение можно встретить несколько раз. Такие значения x i случайной величины записывают с указанием n i числа раз его появления в n наблюдениях, это и есть частота данного значения.
В случае непрерывной случайной величины на практике применяют группировку.
  1. Типологическая группировка – это разделение исследуемой качественно разнородной совокупности на классы, социально–экономические типы, однородные группы единиц. Для построения данной группировки используйте параметр Дискретный вариационный ряд.
  2. Структурной называется группировка , в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому–либо варьирующему признаку. Для построения данной группировки используйте параметр Интервальный ряд.
  3. Группировка, выявляющая взаимосвязи между изучаемыми явлениями и их признаками, называется аналитической группировкой (см. аналитическая группировка ряда).

Пример №1 . По данным таблицы 2 постройте ряды распределения по 40 коммерческим банкам РФ. По полученным рядам распределения определите: прибыль в среднем на один коммерческий банк, кредитные вложения в среднем на один коммерческий банк, модальное и медианное значение прибыли; квартили, децили, размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, коэффициент вариации.

Решение :
В разделе «Вид статистического ряда» выбираем Дискретный ряд. Нажимаем Вставить из Excel . Количество групп: по формуле Стэрджесса

Принципы построения статистических группировок

Ряд наблюдений, упорядоченных по возрастанию, называется вариационным рядом . Группировочным признаком называется признак, по которому производится разбивка совокупности на отдельные группы. Его называют основанием группировки. В основание группировки могут быть положены как количественные, так и качественные признаки.
После определения основания группировки следует решить вопрос о количестве групп, на которые надо разбить исследуемую совокупность.

При использовании персональных компьютеров для обработки статистических данных группировка единиц объекта производится с помощью стандартных процедур.
Одна из таких процедур основана на использовании формулы Стерджесса для определения оптимального числа групп:

k = 1+3,322*lg(N)

Где k – число групп, N – число единиц совокупности.

Длину частичных интервалов вычисляют как h=(x max -x min)/k

Затем подсчитывают числа попаданий наблюдений в эти интервалы, которые принимают за частоты n i . Малочисленные частоты, значения которых меньше 5 (n i < 5), следует объединить. в этом случае надо объединить и соответствующие интервалы.
В качестве новых значений вариант берут середины интервалов x i =(c i-1 +c i)/2.

Пример №3 . В результате 5%-ной собственно-случайной выборки получено следующее распределение изделий по содержанию влаги. Рассчитайте: 1) средний процент влажности; 2) показатели, характеризующие вариацию влажности.
Решение получено с помощью калькулятора : Пример №1

Построить вариационный ряд. По найденному ряду построить полигон распределения, гистограмму, кумуляту. Определить моду и медиану.
Скачать решение

Пример . По результатам выборочного наблюдения (выборка А приложение):
а) составьте вариационный ряд;
б) вычислите относительные частоты и накопленные относительные частоты;
в) постройте полигон;
г) составьте эмпирическую функцию распределения;
д) постройте график эмпирической функции распределения;
е) вычислите числовые характеристики: среднее арифметическое, дисперсию, среднее квадратическое отклонение. Решение

На основе данных, приведенных в Таблице 4 (Приложение 1) и соответствующих Вашему варианту, выполнить:

  1. На основе структурной группировки построить вариационный частотный и кумулятивный ряды распределения, используя равные закрытые интервалы, приняв число групп равным 6. Результаты представить в виде таблицы и изобразить графически.
  2. Проанализировать вариационный ряд распределения, вычислив:
    • среднее арифметическое значение признака;
    • моду, медиану, 1-ый квартиль, 1-ый и 9-тый дециль;
    • среднее квадратичное отклонение;
    • коэффициент вариации.
  3. Сделать выводы.

Требуется: ранжировать ряд, построить интервальный ряд распределения, вычислить среднее значение, колеблемость среднего значения, моду и медиану для ранжированного и интервального рядов.

На основе исходных данных построить дискретный вариационный ряд ; представить его в виде статистической таблицы и статистических графиков. 2). На основе исходных данных построить интервальный вариационный ряд с равными интервалами. Число интервалов выбрать самостоятельно и объяснить этот выбор. Представить полученный вариационный ряд в виде статистической таблицы и статистических графиков. Указать виды примененных таблиц и графиков.

С целью определения средней продолжительности обслуживания клиентов в пенсионном фонде, число клиентов которого очень велико, по схеме собственно-случайной бесповторной выборки проведено обследование 100 клиентов. Результаты обследования представлены в таблице. Найти:
а) границы, в которых с вероятностью 0.9946 заключено среднее время обслуживания всех клиентов пенсионного фонда;
б) вероятность того, что доля всех клиентов фонда с продолжительностью обслуживания менее 6 минут отличается от доли таких клиентов в выборке не более чем на 10% (по абсолютной величине);
в) объем повторной выборки, при котором с вероятностью 0.9907 можно утверждать, что доля всех клиентов фонда с продолжительностью обслуживания менее 6 минут отличается от доли таких клиентов в выборке не более чем на 10% (по абсолютной величине).
2. По данным задачи 1, используя X 2 критерий Пирсона, на уровне значимости α = 0,05 проверить гипотезу о том, что случайная величина Х – время обслуживания клиентов – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
Скачать решение

Дана выборка из 100 элементов. Необходимо:

  1. Построить ранжированный вариационный ряд;
  2. Найти максимальный и минимальный члены ряда;
  3. Найти размах вариации и количество оптимальных промежутков для построения интервального ряда. Найти длину промежутка интервального ряда;
  4. Построить интервальный ряд. Найти частоты попадания элементов выборки в составленные промежутки. Найти средние точки каждого промежутка;
  5. Построить гистограмму и полигон частот. Сравнить с нормальным распределением (аналитически и графически);
  6. Построить график эмпирической функции распределения;
  7. Рассчитать выборочные числовые характеристики: выборочное среднее и центральный выборочный момент;
  8. Рассчитать приближенные значения среднего квадратического отклонения, асимметрии и эксцесса (пользуясь пакетом анализа MS Excel). Сравнить приближенные расчетные значения с точными (рассчитанные по формулам MS Excel);
  9. Сравнить выборочные графические характеристики с соответствующими теоретическими.
Скачать решение

Имеются следующие выборочные данные (выборка 10%-ная, механическая) о выпуске продукции и сумме прибыли, млн. руб. По исходным данным:
Задание 13.1.
13.1.1. Постройте статистический ряд распределения предприятий по сумме прибыли, образовав пять групп с равными интервалами. Постройте графики ряда распределения.
13.1.2. Рассчитайте числовые характеристики ряда распределения предприятий по сумме прибыли: среднюю арифметическую, среднее квадратическое отклонение, дисперсию, коэффициент вариации V. Сделайте выводы.
Задание 13.2.
13.2.1. Определите границы, в которых с вероятностью 0.997 заключена сумма прибыли одного предприятия в генеральной совокупности.
13.2.2. Используя x2-критерий Пирсона , при уровне значимости α проверить гипотезу о том, что случайная величина X – сумма прибыли – распределена по нормальному закону.
Задание 13.3.
13.3.1. Определите коэффициенты выборочного уравнения регрессии.
13.3.2. Установите наличие и характер корреляционной связи между стоимостью произведённой продукции (X) и суммой прибыли на одно предприятие (Y). Постройте диаграмму рассеяния и линию регрессии.
13.3.3. Рассчитайте линейный коэффициент корреляции. Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции. Сделайте вывод о тесноте связи между факторами X и Y, используя шкалу Чеддока .
Методические рекомендации . Задание 13.3 выполняется с помощью этого сервиса .
Скачать решение

Задача . Следующие данные представляют собой затраты времени клиентов на заключение договоров. Построить интервальный вариационный ряд представленных данных, гистограмму, найти несмещенную оценку математического ожидания, смещенную и несмещенную оценку дисперсии.

Пример . По данным таблицы 2:
1) Постройте ряды распределения по 40 коммерческим банкам РФ:
А) по величине прибыли;
Б) по величине кредитных вложений.
2) По полученным рядам распределения определите:
А) прибыль в среднем на один коммерческий банк;
Б) кредитные вложения в среднем на один коммерческий банк;
В) модальное и медианное значение прибыли; квартили, децили;
Г) модальное и медианное значение кредитных вложений.
3) По полученным в п. 1 рядам распределения рассчитайте:
а) размах вариации;
б) среднее линейное отклонение;
в) среднее квадратическое отклонение;
г) коэффициент вариации.
Необходимые расчеты оформите в табличной форме. Результаты проанализируйте. Сделайте выводы.
Постройте графики полученных рядов распределения. Графически определите моду и медиану.

Решение:
Для построения группировка с равными интервалами воспользуемся сервисом Группировка статистических данных .

Рисунок 1 – Ввод параметров

Описание параметров
Количество строк : количество исходных данных. Если размерность ряда небольшая, укажите его количество. Если выборка достаточно объемная, то нажмите кнопку Вставить из Excel .
Количество групп : 0 – число групп будет определяться по формуле Стэрджесса.
Если задано конкретное число групп, укажите его (например, 5).
Вид ряда : Дискретный ряд.
Уровень значимости : например, 0.954 . Этот параметр задается для определения доверительного интервала среднего значения.
Выборка : Например, проведена 10% -ная механическая выборка. Указываем число 10 . Для наших данных указываем 100 .

Различные выборочные значения назовемвариантами ряда значений и обозначим: х 1 , х 2 , …. Прежде всего произведем ранжирование вариантов, т.е. расположение их в порядке возрастания или убывания. Для каждого варианта указывается свой вес, т.е. число, которое характеризует вклад данного варианта в общую совокупность. В качестве весов выступают частоты или частости.

Частотой n i варианта х i называется число, показывающее сколько раз встречается данный вариант в рассматриваемой выборочной совокупности.

Частостью или относительной частотой w i варианта х i называется число, равное отношению частоты варианта к сумме частот всех вариантов. Частость показывает, какая часть единиц выборочной совокупности имеет данный вариант.

Последовательность вариантов с соответствующими им весами (частотами или частостями), записанная в порядке возрастания (или убывания), называется вариационным рядом .

Вариационные ряды бывают дискретными и интервальными.

Для дискретного вариационного ряда задаются точечные значения признака, для интервального – значения признака задаются в виде интервалов. Вариационные ряды могут показывать распределение частот или относительных частот (частостей), в зависимости от того, какая величина указывается для каждого варианта – частота или частость.

Дискретный вариационный ряд распределения частот имеет вид:

Частости находятся по формуле , i = 1, 2, …, m .

w 1 + w 2 + … + w m = 1.

Пример 4.1. Для данной совокупности чисел

4, 6, 6, 3, 4, 9, 6, 4, 6, 6

построить дискретные вариационные ряды распределения частот и частостей.

Решение . Объем совокупности равен n = 10. Дискретный ряд распределения частот имеет вид

Аналогичную форму записи имеют интервальные ряды.

Интервальный вариационный ряд распределения частот записывается в виде:

Сумма всех частот равна общему числу наблюдений, т.е. объему совокупности: n = n 1 + n 2 + … + n m .

Интервальный вариационный ряд распределения относительных частот (частостей) имеет вид:

Частость находится по формуле , i = 1, 2, …, m .

Сумма всех частостей равна единице: w 1 + w 2 + … + w m = 1.

Наиболее часто на практике применяются интервальные ряды. Если статистических выборочных данных очень много и их значения отличаются друг от друга на сколь угодно малую величину, то дискретный ряд для этих данных будет достаточно громоздким и неудобным для дальнейшего исследования. В этом случае применяют группировку данных, т.е. промежуток, содержащий все значения признака, разбивают на несколько частичных интервалов и, подсчитав частоту для каждого интервала, получают интервальный ряд. Запишем более подробно схему построения интервального ряда, предположив, что длины частичных интервалов будут одинаковыми.

2.2 Построение интервального ряда

Для построения интервального ряда нужно:

Определить число интервалов;

Определить длину интервалов;

Определить расположение интервалов на оси.

Для определения числа интервалов k существует формула Стерджеса, по которой

,

где n - объем всей совокупности.

Например, если имеется 100 значений признака (вариант), то рекомендуется для построения интервального ряда взять число интервалов равным интервалам.

Однако очень часто на практике число интервалов выбирает сам исследователь, учитывая, что это число не должно быть очень большим, чтобы ряд не был громоздким, но и не очень маленьким, чтобы не потерять некоторых свойств распределения.

Длина интервала h определяется по следующей формуле:

,

где x max и x min - это соответственно самое большое и самое маленькое значения вариантов.

Величину называют размахом ряда.

Для построения самих интервалов поступают по-разному. Один из самых простых способов заключается в следующем. За начало первого интервала принимают величину
. Тогда остальные границы интервалов находятся по формуле . Очевидно, что конец последнего интервала a m+1 должен удовлетворять условию

После того как найдены все границы интервалов, определяют частоты (или частости) этих интервалов. Для решения этой задачи просматривают все варианты и определяют число вариант, попавших в тот или иной интервал. Полное построение интервального ряда рассмотрим на примере.

Пример 4.2. Для следующих статистических данных, записанных в порядке возрастания, построить интервальный ряд с числом интервалов, равным 5:

11, 12, 12, 14, 14, 15, 21, 21, 22, 23, 25, 38, 38, 39, 42, 42, 44, 45, 50, 50, 55, 56, 58, 60, 62, 63, 65, 68, 68, 68, 70, 75, 78, 78, 78, 78, 80, 80, 86, 88, 90, 91, 91, 91, 91, 91, 93, 93, 95, 96.

Решение. Всего n =50 значений вариантов.

Число интервалов задано в условии задачи, т.е. k =5.

Длина интервалов равна
.

Определим границы интервалов:

a 1 = 11 − 8,5 = 2,5; a 2 = 2,5 + 17 = 19,5; a 3 = 19,5 + 17 = 36,5;

a 4 = 36,5 + 17 = 53,5; a 5 = 53,5 + 17 = 70,5; a 6 = 70,5 + 17 = 87,5;

a 7 = 87,5 +17 = 104,5.

Для определения частоты интервалов посчитываем число вариантов, попавших в данный интервал. Например, в первый интервал от 2,5 до 19,5 попадают варианты 11, 12, 12, 14, 14, 15. Их число равно 6, следовательно, частота первого интервала равна n 1 =6. Частость первого интервала равна . Во второй интервал от 19,5 до 36,5 попадают варианты 21, 21, 22, 23, 25, число которых равно 5. Следовательно, частота второго интервала равна n 2 =5, а частость . Найдя аналогичным образом частоты и частости для всех интервалов, получим следующие интервальные ряды.

Интервальный ряд распределения частот имеет вид:

Сумма частот равна 6+5+9+11+8+11=50.

Интервальный ряд распределения частостей имеет вид:

Сумма частостей равна 0,12+0,1+0,18+0,22+0,16+0,22=1. ■

При построении интервальных рядов, в зависимости от конкретных условий рассматриваемой задачи, могут применяться и другие правила, а именно

1. Интервальные вариационные ряды могут состоять из частичных интервалов разной длины. Неравные длины интервалов позволяют выделить свойства статистической совокупности с неравномерным распределением признака. Например, если границы интервалов определяют численность жителей в городах, то целесообразно в данной задаче использовать неравные по длине интервалы. Очевидно, что для небольших городов имеет значение и небольшая разница в числе жителей, а для больших городов разница в десятки и сотни жителей не имеет существенного значения. Интервальные ряды с неравными длинами частичных интервалов исследуются, в основном, в общей теории статистики и их рассмотрение выходит за рамки данного пособия.

2. В математической статистике иногда рассматривают интервальные ряды, для которых левую границу первого интервала полагают равной –∞, а правую границу последнего интервала +∞. Это делается для того, чтобы приблизить статистическое распределение к теоретическому.

3. При построении интервальных рядов может оказаться, что значение какого-то варианта совпадает в точности с границей интервала. Лучше всего в этом случае поступить следующим образом. Если такое совпадение только одно, то считать, что рассматриваемый вариант со своей частотой попал в интервал, находящийся ближе к середине интервального ряда, если таких вариантов несколько, то либо все их отнести к правым от этих вариант интервалам, либо все – к левым.

4. После определения числа интервалов и их длины, расположение интервалов можно производить и по другому способу. Находят среднее арифметическое всех рассматриваемых значений вариантов х ср. и строят первый интервал таким образом, чтобы это среднее выборочное находилось бы внутри какого-то интервала. Таким образом, получаем интервал от х ср. – 0,5h до х ср.. + 0,5h . Затем влево и вправо, прибавляя длину интервала, строим остальные интервалы до тех пор, пока x min и x max не попадут соответственно в первый и последний интервалы.

5. Интервальные ряды при большом числе интервалов удобно записывать вертикально, т.е. интервалы записывать не в первой строке, а в первом столбце, а частоты (или частости) во втором столбце.

Выборочные данные могут рассматриваться как значения некоторой случайной величины Х . Случайная величина имеет свой закон распределения. Из теории вероятностей известно, что закон распределения дискретной случайной величины можно задать в виде ряда распределения, а непрерывной – с помощью функции плотности распределения. Однако существует универсальный закон распределения, который имеет место и для дискретной и для непрерывной случайных величин. Этот закон распределения задается в виде функции распределения F (x ) = P (X <x ). Для выборочных данных можно указать аналог функции распределения – эмпирическую функцию распределения.

Пример решения контрольной работы по математической статистике

Задача 1

Исходные данные : студенты некоторой группы, состоящей из 30 человек сдали экзамен по курсу «Информатика». Полученные студентами оценки образуют следующий ряд чисел:

I. Составим вариационный ряд

m x

w x

m x нак

w x нак

Итого:

II. Графическое представление статистических сведений.

III. Числовые характеристики выборки.

1. Среднее арифметическое

2. Среднее геометрическое

3. Мода

4. Медиана

222222333333333 | 3 34444444445555

5. Выборочная дисперсия

7. Коэффициент вариации

8. Ассиметрия

9. Коэффициент ассиметрии

10. Эксцесс

11. Коэффициент эксцесса

Задача 2

Исходные данные : студенты некоторой группы написали выпускную контрольную работу. Группа состоит из 30 человек. Набранные студентами баллы образуют следующий ряд чисел

Решение

I. Так как признак принимает много различных значений, то для него построим интервальный вариационный ряд. Для этого сначала зададим величину интервала h . Воспользуемся формулой Стэрджера

Составим шкалу интервалов. При этом за верхнюю границу первого интервала примем величину, определяемую по формуле:

Верхние границы последующих интервалов определим по следующей рекуррентной формуле:

, тогда

Построение шкалы интервалов заканчиваем, так как верхняя граница очередного интервала стала больше или равна максимальному значению выборки
.

II. Графическое отображение интервального вариационного ряда

III. Числовые характеристики выборки

Для определения числовых характеристик выборки составим вспомогательную таблицу

Сумма :

1. Среднее арифметическое

2. Среднее геометрическое

3. Мода

4. Медиана

10 11 12 12 13 13 13 13 14 14 14 14 15 15 15 |15 15 15 16 16 16 16 16 17 17 18 19 19 20 20

5. Выборочная дисперсия

6. Выборочное стандартное отклонение

7. Коэффициент вариации

8. Ассиметрия

9. Коэффициент ассиметрии

10. Эксцесс

11. Коэффициент эксцесса

Задача 3

Условие : цена деления шкалы амперметра равна 0,1 А. Показания округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0,02 А.

Решение.

Ошибку округления отсчета можно рассматривать как случайную величину Х , которая распределена равномерно в интервале между двумя соседними целыми делениями. Плотность равномерного распределения

,

где
- длина интервала, в котором заключены возможные значения Х ; вне этого интервала
В данной задаче длина интервала, в котором заключены возможные значения Х , равна 0,1, поэтому

Ошибка отсчета превысит 0,02 если она будет заключена в интервале (0,02; 0,08). Тогда

Ответ: р =0,6

Задача 4

Исходные данные: математическое ожидание и стандартное отклонение нормально распределенного признака Х соответственно равны 10 и 2. Найти вероятность того, чтов результате испытания Х примет значение, заключенное в интервале (12, 14).

Решение.

Воспользуемся формулой

И теоретическими частотами

Решение

Для Х ее математическое ожидание M(X) и дисперсию D(X). Решение . Найдем функцию распределения F(x) случайной величины... ошибка выборки). Составим вариационный ряд Ширина интервала составит : Для каждого значения ряда подсчитаем, какое количество...

  • Решение: уравнение с разделяющимися переменными

    Решение

    В виде Для нахождения частного решения неоднородного уравнения составим систему Решим полученную систему... ; +47; +61; +10; -8. Построить интервальный вариационный ряд . Дать статистические оценки среднего значения...

  • Решение: Проведем расчет цепных и базисных абсолютных приростов, темпов роста, темпов прироста. Полученные значения сведем в таблицу 1

    Решение

    Объем производства продукции. Решение : Средняя арифметическая интервального вариационного ряда вычисляется следующим образом: за... Предельная ошибка выборки с вероятностью 0,954 (t=2) составит : Δ w = t*μ = 2*0,0146 = 0,02927 Определим границы...

  • Решение. Признак

    Решение

    О трудовом стаже которых и составили выборку. Средний по выборке стаж... рабочего дня этих сотрудников и составили выборку. Средняя по выборке продолжительность... 1,16, уровень значимости α = 0,05. Решение . Вариационный ряд данной выборки имеет вид: 0,71 ...

  • Рабочая учебная программа по биологии для 10-11 классов Составитель: Поликарпова С. В

    Рабочая учебная программа

    Простейших схем скрещивания» 5 Л.р. «Решение элементарных генетических задач» 6 Л.р. «Решение элементарных генетических задач» 7 Л.р. « ... , 110, 115, 112, 110. Составьте вариационный ряд , начертите вариационную кривую, найдите среднюю величину признака...

  • Рассказать друзьям