Полимеры,
их промышленное значение
Природа окружает нас загадками,
и попытка их решения принадлежит
к величайшим радостям жизни.
У.Рамзай
Цели. Закрепить знания о высокомолекулярных соединениях, рассмотреть практическое применение различных полимеров, их свойства и строение; показать пути улучшения качества полимеров и материалов на их основе в связи с возросшими к ним требованиями; рассмотреть некоторые виды полимеров, выпускаемые на ОАО «Нижнекамскнефтехим».
Оборудование. Коллекции пластмасс, различные виды каучука.
ХОД УРОКА
Учитель (вводное слово). В начале 70-х гг. ХХ в. любознательные туристы обнаружили в глухом углу бескрайних сибирских лесов семью, прожившую вдали от городов и сел несколько десятков лет. Это семья Лыковых. Что же поразило отшельников больше всего среди вещей, принесенных туристами? Прозрачная полиэтиленовая пленка!
«Стекло, а мнется», – восхищенно сказал седобородый глава семьи, рассматривая полиэтилен, один из многих синтетических материалов, придуманных химиками для облегчения и улучшения нашего хозяйства и быта.
Почему же возникла необходимость в создании полимеров, какими ценными свойствами они обладают, какие полимеры выпускает ОАО «Нижнекамскнефтехим» и где их применяют? Это те вопросы, которые мы должны сегодня рассмотреть на уроке.
Синтетические материалы: пластмассы, каучуки, синтетические волокна – начали производить немногим более 70 лет назад. Несмотря на это, они во многих отношениях превосходят давно известные материалы. Правда, у каждого из них, как и у природных материалов, есть свои недостатки, и при выборе приходится их учитывать и сопоставлять с достоинствами. Главное преимущество пластмасс по сравнению с металлами заключается в том, что их свойства легче регулировать. Поэтому пластмассы быстрее и лучше можно приспособить к требованиям практики. Послушаем сообщение учащегося .
1-й ученик.С каждым днем открываются новые области практического использования полимеров в приборо- и машиностроении, радио- и электротехнике, телевидении, жилищном строительстве, судо-, авто-, самолето- и ракетостроении. Действительно, в настоящее время создана совершенно новая промышленность строительных материалов. Древесно- и стружечно-волокнистые материалы получаются при пропитке синтетическими смолами опилок, стружек и других отходов деревообрабатывающей отрасли промышленности с последующим прессованием. Это красивые по внешнему виду, прочные и дешевые отделочные материалы, не уступающие по своим качествам дорогим древесным породам (дубу, красному дереву и др.). Очень ценными свойствами обладают стеклопластики , которые готовят пропиткой стеклоткани синтетическими смолами с последующим прессованием в листовой материал исключительной прочности. Лучшие сорта стеклопластика превосходят по прочности некоторые сорта легированных сталей. Кроме того, стеклопластики в 5 раз легче стали и в 2 раза легче алюминия. Эти легкие, прочные и стойкие к коррозии металлы уже сейчас начинают успешно конкурировать с легкими металлами. Так, например, пластмассовый кузов автомобиля прочнее обычного металлического и выдерживает без всякой деформации удары молота. В самолете ТУ-104 насчитывается 120 000 деталей из пластика. В искусственных спутниках Земли значительная часть конструкции двигателей и приборов сделана из синтетических материалов. Сейчас уже имеются первые образцы прочных красивых пластмассовых автомобилей, судов и даже домов, где вся обстановка изготовлена также из синтетических материалов.
Очень ценными синтетическими полимерными материалами являются пенопласты , или поропласты . Пенопласты дешевы, прочны, непроницаемы для воды, газов и похожи на застывшую пену. Пенопласты получают в результате заполнения большей части их объема воздухом или азотом. При рассмотрении под микроскопом таких сверхлегких пластиков видно, что они состоят из миллиардов крошечных замкнутых пузырьков. Пенопласты необычайно легки. Некоторые из них в 700 раз легче стали, в 100 раз легче воды и в 25 раз легче пробки. Домики из пенопластов прекрасно зарекомендовали себя на наших полярных станциях благодаря высоким тепло-, звуко- и электроизоляционным свойствам.
Возрастает применение полимерных синтетических материалов при создании новых легких, прочных образцов мебели, невыгорающих и легко моющихся обоев, легкой, прочной обуви, новых красивых тканей, немнущихся, не выгорающих на солнце и не боящихся дождя, прочных на истирание синтетических ковров и т.д.
По-новому будут решаться вопросы здравоохранения благодаря применению ионообменных смол (иониты), обладающих способностью очищать от примесей питьевую воду, различные лекарственные субстанции, антибиотики. Хирурги успешно заменяют пораженные участки кровеносных сосудов, трахей, бронхов и даже пищевода прочными и эластичными пластмассовыми трубками. Искусственные кровеносные сосуды со временем обрастают капсулой из клеток организма и не вызывают воспалительных процессов, т.к. обладают еще и бактерицидным действием. Синтетический полимерный клей склеивает кости и быстро излечивает переломы. Специальные водорастворимые полимеры с успехом могут заменить до 30% человеческой крови. Такую синтетическую кровь можно переливать любому человеку, независимо от особенностей крови больного. Мы стоим на пороге новых интересных открытий. Поэтому с полным основанием можно называть наш век не только веком атомной энергии и освоения космоса, но и веком полимеров.
Учитель. Какие же преимущества у пластмасс?
а) Низкая плотность (легкие), негигроскопичность;
б) отсутствие запаха и вкуса;
в) стойкость к коррозии;
г) стойкость к кислотам и щелочам;
д) изделиям из пластмассы можно придать любую форму;
е) поддаются крошению;
ж) обладают электро- и теплоизоляционными свойствами;
з) прочность к истиранию.
Учитель показывает коллекцию пластмасс.
Учитель. Лауреатами Нобелевской премии по химии в 2000 г. стали американские исследователи Алан Хигер и Алан Мак-Диармид, а также японский химик Хидеки Сиракава. Ими созданы электропроводящие полимеры. В одном из сотен опытов по синтезу полиацетилена Сиракава использовал ошибочно высокую концентрацию катализатора. Результатом этой ошибки было образование прекрасных серебристых пленок полиацетилена с характерным металлическим блеском. Американские химики в это время исследовали металлические свойства неорганического полимера нитрида серы (SN) n .
Ученые объединили усилия в поиске способов синтеза полимерных пленок с электропроводящими свойствами. Исследователям удалось добиться желаемого за счет обработки полиацетилена парaми галогенов – брома или йода.
Открытие этими учеными высокой электропроводности модифицированных полимеров оказало большое влияние на науку о полимерах, положило начало исследованию «синтетических металлов» и послужило основой для получения целого ряда новых материалов. Проводящие полимеры применяют в качестве ингибиторов коррозии, антистатических покрытий, защитных экранов от электромагнитного излучения и т.д.
Сейчас химики разрабатывают различные синтетические ткани, пленки, волокна, пластмассы из созданных в лаборатории полимеров. Один из них – тефлон (демонстрация полимера). Тефлон – белое вещество, напоминающее парафин. Обладает высокой тепло- и морозостойкостью, прекрасный изоляционный материал. По химической стойкости он превышает все известные синтетические материалы и благородные металлы. Не разрушается при действии кислот и щелочей, даже царской водки. Применяется в химической и пищевой отраслях промышленности, в медицине, ядерной технике.
Задание классу . Выведите формулу этого полимера, если известно, что его получают из фторпроизводного этилена, которое содержит по массе 76 ?% фтора. Плотность этого соединения по водороду равна 50. Напишите уравнение реакции полимеризации.
Один ученик работает у доски, остальные выполняют задание в тетради.
Учитель. Основу большинства пластичных и эластичных полимеров составляют каучуки , различные виды которых выпускает и ОАО «Нижнекамскнефтехим». Об истории открытия каучуков, их строении и синтезе расскажут учащиеся.
Сообщения учащихся.
2-й ученик. Природные и полученные в лаборатории органические соединения современная химия превращает в многочисленные полимеры, которые обычно относят к одному из трех больших отрядов веществ: пластическим массам, химическим волокнам и эластомерам. Основу большинства гибких и пластических эластомеров составляют каучуки.
Каучуки… Откуда появилось это странное название?
История открытия, изучения, улучшения свойств и искусственного воспроизведения этого чудо-материала ярка и увлекательна!
Где-то в зарослях тропического леса Центральной и Южной Америки у ствола гигантского дерева гевеи присел один из местных жителей. Из разреза в коре дерева он собирает вытекающий сок, быстро густеющий на воздухе. Этот сок индейцы называют «каучу», что в переводе означает «слеза дерева».
В XI в. жители Перу, одной из стран Южной Америки, научились защищать свою обувь от влаги с помощью сока гевеи. Обувь обмакивают в «каучу» и полученную пленку коптят на костре. Обувь становится непромокаемой!
Моряки второй экспедиции Колумба к берегам Америки, высадившиеся на остров Гаити в 1496 г., с удивлением наблюдали, как островитяне играют в мяч, который высоко подпрыгивает при ударе о землю. Известные в Европе мячи из кожи и шерсти не обладали такой прыгучестью. Жители Гаити делали свои мячи из каучука! Так назвали новый материал европейцы, прибавив одну букву к местному названию удивительного природного полимера. Мяч из каучука, подаренный Христофором Колумбом испанской королеве Изабелле Кастильской, долго служил развлечением для ее двора.
Одежду, пропитанную каучуком, привезли португальские мореплаватели своему королю. Короля, облаченного в нее, облили водой, но он «вышел сухим из воды».
Участник экспедиции в Южную Америку Ш.М. Кондамин представил во Французскую академию наук в 1738 г. первое научное описание каучука, его свойств, способов добычи и обработки.
3-й ученик. Известный химик Джозеф Пристли нашел каучуку первое применение, весьма важное для всех рисующих и пишущих: шарики и кубики из каучука прекрасно стирали надписи, сделанные карандашом.
В 1811 г. в Вене, а в 1823 г. в Глазго открылись первые фабрики по производству резиновых изделий. Инженер Ч.Макинтош научился растворять каучук в маслах, полученных из каменного угля. Раствором пропитывали дождевые плащи, почтовые сумки и навесы для карет. Но каучуковые покрытия в жару становились липкими, а на морозе – жесткими и ломкими.
Одержимый американский изобретатель-самоучка Чарльз Гудийр в 1839 г. нашел способ сохранить эластичность каучука, сделав при этом его прочным, достаточно твердым, не липким, стойким к воздействию температурных перепадов. Небольшой нагрев каучука с предварительно введенной в него серой приводил к этим благоприятным изменениям. Процесс превращения в резину получил название вулканизации . Он назван так в честь Вулкана, древнеримского бога огня.
Резина нашла широкое применение не только в быту, но и в технике. На рубеже XIX и XX вв. из нее уже делали шины для изобретенных автомобилей.
Химики трудились над расшифровкой состава и структуры каучука. Французский ученый Густав Бушарда установил, что природный каучук представляет собой полимер, длинная цепочка которого состоит из множества небольших молекул сравнительно простого органического соединения – изопрена, непредельного углеводорода, полученного Бушардом в ходе сложной перегонки скипидара без доступа воздуха.
4-й ученик. Один из учеников А.М. Бутлерова, молодой химик И.Л. Кондаков, синтезировал в лаборатории близкое к изопрену соединение – диметилбутадиен, обнаружил его склонность к полимеризации и создал искусственное каучуковое вещество. Другой ученик Бутлерова, академик А.Е. Фаворский, синтезировал изопрен и хлоропрен из простого сырья – газа ацетилена.
Советские ученые добились большого успеха. В 1928 г. группа ленинградских химиков под руководством профессора и будущего академика С.В. Лебедева победила в международном конкурсе на лучший способ производства искусственного каучука, объявленном Советским правительством. В 1932 г. в СССР впервые в мире на заводе в г.Ярославле организовано производство каучука из бутадиена, иначе называемого дивинилом, по способу С.В.Лебедева. Бутадиен получали из технического спирта, а затем осуществляли полимеризацию его в присутствии катализатора – металлического натрия. Советский ученый Б.В. Бызов сумел значительно удешевить процесс создания бутадиена, используя для его синтеза газ бутан из природных газообразных продуктов, выделяемых при переработке нефти.
К концу 1930-х гг. на заводах Германии, а в начале 1940-х гг. и в США тоже начался выпуск синтетического каучука.
5-й ученик. М ировое производство каучука в начале 1980-х гг. значительно превысило 10 млн т в год. Более 60 % этого огромного количества получали в ходе промышленного синтеза каучука, остальное – на больших плантациях гевеи в тропических странах.
Увлекательна и поучительна история открытия и применения каучука. Нет сомнения, что каучуковые мячи – одна из самых важных находок, сделанных европейскими путешественниками в южноамериканских странах. При этом мы отчетливо сознаем, что без вмешательства человека каучук не превратился бы в столь необходимый нам материал. Что же произошло с каучуком во время облагораживания его свойств способом вулканизации?
Невидимое инфракрасное излучение, пучки электронов и рентгеновских лучей помогли ученым заглянуть в глубь этого полимера. Большие молекулы натурального каучука скручены в спирали, клубки, но построены они линейно, между ними, как правило, нет перемычек. Именно эта особенность позволяет кусочкам каучука до вулканизации увеличивать свою длину при растяжении почти в 1000 раз!
Под действием серы и некоторых других вулканизаторов, таких, как нитросоединения или пероксид бензоила, при нагревании происходит «сшивка» больших молекул. Между длинными цепочками образуются поперечные химические мостики-связи. Получается резина, имеющая трехмерную сетчатую пространственную структуру, более прочную и твердую, чем у каучука до вулканизации.
Если в каучук добавлено немного серы, всего 10–15 % от массы исходного вещества, то каучук приобретает прочность, но сохраняет эластичность. Когда количество введенной в каучук серы достигает 25–40 %, образуется твердое роговидное вещество, называемое эбонитом . Вместо живой подвижной резины возникает твердый материал, стойкий к растворителям, хороший электроизолятор, из которого изготавливают многочисленные детали для радиотехники и электроники.
Убедительное доказательство того, что столь очевидные изменения физических свойств веществ происходят благодаря появлению в каучуке поперечных химических связей между длинными молекулами, было получено академиком Н.Д. Зелинским. Группа научных сотрудников под руководством выдающегося советского ученого создала синтетический каучук из хлоропрена, непредельного углеводорода, близкого по составу к изопрену. Хлоропреновый каучук не горит, прочен, эластичен, не поддается разрушению даже таким активным окислителем, как озон, и для превращения в резину путем вулканизации не нуждается в сере! Достаточно небольшого нагревания, и поперечные связи в этом каучуке возникают за счет внутренней перегруппировки его атомов.
Учитель.Из 120 наименований продукции ОАО «Нижнекамскнефтехим» более половины приходится на производство мономеров или полимеров. Назовем некоторые.
Синтетический каучук изопреновый СКИ-3. Используют для изготовления автомобильных шин, резинотехнических изделий, резиновой обуви, спортинвентаря и т.д.
Модифицированный синтетический каучук изопреновый СКИ-3С, СКИ-3Ш.
Бутиловый каучук. Получают сополимеризацией изопрена и изобутилена и применяют для изготовления автокамер, диафрагм форматоров-вулканизаторов.
Отходы синтетических каучуков используют в производстве резинотехнических изделий (ремни конвейерные, шланги, для производства дорожных покрытий).
Получают различные полиэфиры на основе оксида этилена и пропилена с глицерином, применяемые для производства пенополиуретанов.
Подводя итог, нужно сказать, что полимеры прочно вошли в нашу жизнь. Мне остается пожелать, чтобы вам помог случай в открытии новых полимеров. «Случай помогает только подготовленному уму». По этому поводу хочется рассказать об истории открытия на основе натурального нового полимерного материала.
В один из дней 1845 г. профессор химии Х.Ф. Шейнбейн, уже открывший к тому времени необычный газ озон, работал в своей лаборатории в Швейцарии. Нечаянно пролив на пол смесь концентрированных кислот HNO 3 и H 2 SO 4 , он машинально вытер пол хлопчатобумажным фартуком своей жены. «Кислоты могут прожечь фартук», – подумал Шейнбейн, прополоскал его в воде и повесил сушиться над печкой. К приходу жены ничего не должно было напоминать об участии фартука в его опытах. Фартук подсох, но затем раздался не очень громкий взрыв… и фартука не стало.
Позже Шейнбейн понял причину бурных событий, которые произошли в лаборатории. Гидроксильные группы целлюлозной основы фартука под влиянием H 2 SO 4 уступили место нитрогруппам NO 2 . Серная кислота явилась прекрасным катализатором. Хлопчатобумажная ткань превратилась в нитроцеллюлозу (пироксилин) – взрывчатое вещество, выделяющее меньше дыма, чем черный порох. Так случай помог открытию нового вещества.
Желаю всем творческих успехов, упорства и трудолюбия.
Учитель подводит итог урока.
Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса , они называются термопласты , если с помощью химических связей - реактопласты . К линейным полимерам относится, например, целлюлоза , к разветвлённым, например, амилопектин , есть полимеры со сложными пространственными трёхмерными структурами.
В строении полимера можно выделить мономерное звено - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (-СН 2 -CHCl-) n , каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами .
Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки , нуклеиновые кислоты , полисахариды , каучук и другие органические вещества . В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров . Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: поли этилен, поли пропилен, поли винилацетат и т. п.
Энциклопедичный YouTube
-
1 / 5
Особые механические свойства
- эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
- малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
- способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).
Особенности растворов полимеров:
- высокая вязкость раствора при малой концентрации полимера;
- растворение полимера происходит через стадию набухания.
Особые химические свойства:
- способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).
Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.
Классификация
По химическому составу все полимеры подразделяются на органические , элементоорганические , неорганические .
- Органические полимеры.
- Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель - кремнийорганические соединения.
- Неорганические полимеры . Они не содержат в повторяющемся звене связей C-C, но способны содержать органические радикалы , как боковые заместители.
Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов , например, стеклопластиков . Возможны композиционные материалы, все компоненты которых - полимеры (с разным составом и свойствами).
По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай - звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.
Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей - молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными . Полимеры с неполярными звеньями - неполярными , гидрофобными . Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными . Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами .
По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные . Термопластичные полимеры (полиэтилен , полипропилен , полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.
Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды , белки и нуклеиновые кислоты , из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных - высокомолекулярных (см. Химическая эволюция).
Типы
Синтетические полимеры. Искусственные полимерные материалы
Человек давно использует природные полимерные материалы в своей жизни. Это кожа , меха , шерсть , шёлк , хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент , известь , глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы . Однако промышленное производство цепных полимеров началось в начале XX века, хотя предпосылки для этого появились ранее.
Практически сразу же промышленное производство полимеров развивалось в двух направлениях - путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.
В первом случае крупнотоннажное производство базируется на целлюлозе . Первый полимерный материал из физически модифицированной целлюлозы - целлулоид - был получен ещё в середине XIX века. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки , волокна , лакокрасочные материалы и загустители . Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы .
Производство синтетических полимеров началось в 1906 году, когда Лео Бакеланд запатентовал так называемую бакелитовую смолу - продукт конденсации фенола и формальдегида , превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов , телевизоров , розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.
Благодаря усилиям Генри Форда , перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем - также и синтетического каучука . Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида , являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата - без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.
После войны возобновилось производство полиамидного волокна и тканей (капрон , нейлон), начатое ещё до войны. В 50-х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат . Полипропилен и нитрон - искусственная шерсть из полиакрилонитрила , - замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок , шерсть , шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта , что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны - наиболее распространенные герметики,
Термин "полимерия" был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. "Истинные" синтетические полимеры к тому времени ещё не были известны.
Ряд полимеров был, по-видимому, получен ещё в первой половине XIX в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е., собственно, к образованию полимеров (до сих пор полимеры часто называли "смолами"). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).
Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения (начало 1860-х гг.). А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. А.М.Бутлеров предложил рассматривать способность непредельных соединений к полимеризации в качестве критерия их реакционной способности. Отсюда берут свое начало классические работы в области полимеризационных и изомеризационных процессов А.Е. Фаворского, В.Н.Ипатьева и С.В. Лебедева. От исследований нефтяных углеводородов В.В. Марковниковым и затем Н.Д. Зелинским протягиваются нити к современным работам по синтезу всевозможных мономеров из нефтяного сырья.
Здесь следует отметить, что с самого начала промышленное производство полимеров развивалось по двум направлениям: путем переработки природных полимеров в искусственные полимерные материалы и получения синтетических полимеров из органических низкомолекулярных соединений. В первом случае крупнотоннажное производство базируется на целлюлозе, первый материал из физически модифицированной целлюлозы - целлофан, был получен в 1908 г.
Наука о синтезе полимеров из мономеров оказалась куда более масштабным явлением в плане стоящих перед учеными задач.
Несмотря на изобретение в начале XX века способа получения фенолформальдегидных смол Бакеландом не существовало понимания процесса полимеризации. Лишь в 1922 г. немецкий химик Герман Штаудингер выдвинул определение макромолекула - длинной конструкции из атомов, связанных ковалентными связями. Он же первым установил взаимосвязь между молекулярной массой полимера и вязкостью его раствора. Впоследствии американский химик Герман Марк исследовал форму и размер макромолекул в растворе.
Тогда же в 1920-1930-е гг. благодаря передовым работам Н. Н. Семенова в области цепных реакций было обнаружено глубокое сходство механизма полимеризации с цепными реакциями, которые изучал Н. Н. Семенов.
В 30-х гг. было доказано существование свободнорадикального (Г.Штаудингер и др.) и ионного (Ф. Уитмор и др.) механизмов полимеризации.
В СССР в середине 1930-х гг. С.С. Медведев сформулировал понятие «инициирование» полимеризации как результат распада перекисных соединений с образованием радикалов. Им же были оценены количественно реакции передачи цепи как процессы регулирования молекулярной массы. Исследования механизмов свободнорадикальной полимеризации проводились вплоть до 1950-х гг.
Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса, который ввел в химию высокомолекулярных соединений понятия функциональности мономера, линейной и трехмерной поликонденсации. Он же в 1931 синтезировал совместно с Дж.А. Ньюландом хлоропреновый каучук (неопрен) и в 1937 разработал метод получения полиамида для формования волокна типа найлон.
В 1930-е гг. развивалось и учение о структуре полимеров, А.П.Александров впервые развил в 30-х гг. представления о релаксационной природе деформации полимерных тел; В.А. Каргин установил в конце 30-х гг. факт термодинамической обратимости растворов полимеров и сформулировал систему представлений о трех физических состояниях аморфных высокомолекулярных соединений.
До Второй мировой войны наиболее развитые страны освоили промышленное производство СК, полистирола, поливинилхлорида и полиметилметакрилата.
В 1940-е гг. американский физико-химик Флори внес значительный вклад в теорию растворов полимеров и статистическую механику макромолекул, Флори создал методы определения строения и свойств макромолекул из измерений вязкости, седиментации и диффузии.
Эпохальным событием в химии полимеров стало открытие К. Циглером в 1950-е гг. металлокомплексных катализаторов, что привело к появлению полимеров на основе полиолефинов: полиэтилена и полипропилена, которые стали получать при атмосферном давлении. Затем были внедрены в массовое производство полиуретаны (в частности поролон), а также полисилоксаны.
В 1960-1970-е гг. получены уникальные полимеры - ароматические полиамиды, полиимиды, полиэфиркетоны, содержащие в своей структуре ароматические циклы, и характеризующиеся огромной прочностью и термостойкостью. В частности, в 1960-е гг. Каргин В.А. и Кабанов В.А. положили начало новому виду полимерообразования - комплексно-радикальной полимеризации. Ими было показано, что активность непредельных мономеров в реакциях радикальной полимеризации может быть значительно повышена путем связывания их в комплексы с неорганическими солями. Так были получены полимеры неактивных мономеров: пиридина, хинолина и др.
При этом совершенно не затронуто исследование биополимеров, особенно белков и нуклеиновых кислот; а также полимерных жидких кристаллов. Исследования в этой области лежат в пограничных областях между химией и другими естественными науками и далеко выходят за рамки данного реферата.
Полимеры
Однако существует много направлений, позволяющих использовать молекулы-гиганты в мирных целях. Так, если полностью нитрованная целлюлоза - это взрывчатое вещество и может применяться только как таковое, то частично нитрованная целлюлоза (пироксилин ) более безопасна в обращении, и ее можно применять не только в военных целях.
Американский изобретатель Джон Уэсли Хайятт (1837-1920), пытаясь завоевать приз, установленный за создание заменителя слоновой кости для биллиардных шаров, прежде всего обратил внимание именно на частично нитрованную целлюлозу. Он растворил ее в смеси спирта и эфира, добавил камфору, чтобы новое вещество легче было обрабатывать. К 1869 г. Хайятт получил то, что он назвал целлулоидом , и завоевал приз . Целлулоид был первой синтетической пластмассой - материалом, который можно отливать в формы .
Однако, как выяснилось, частично нитрованную целлюлозу можно не только формовать в шары, но и вытягивать в волокна и пленки. Французский химик Луи Мари Гиляр Берниго, граф Шар-донне (1839-1924), получил такие волокна, продавливая раствор нитроцеллюлозы через тончайшие отверстия. Растворитель при этом почти сразу же испарялся.
Из полученных волокон можно было ткать материал, который своим блеском напоминал шелк. В 1884 г. Шардонне запатентовал полученный им искусственный шелк . Шардонне назвал эту ткань рейон - излучающая свет, так как ткань блестела и казалось, что она излучает свет.
Появлением пластмассовых пленок мы обязаны американскому изобретателю Джорджу Истмену (1854-1932). Истмен увлекался фотографией. Пытаясь упростить процесс проявления, он начал смешивать эмульсию соединений серебра с желатиной, чтобы сделать эту эмульсию сухой. Полученную таким образом смесь можно было хранить, а следовательно, и готовить впрок. В 1884 г. Истмен заменил стеклянные пластинки на целлулоидные.
Целлулоид невзрывоопасен, но он легко воспламеняется, что может быть причиной пожара, поэтому Истмен начал поиски менее горючих материалов. Когда в целлюлозу вместо нитрогрупп ввели ацетильные группы, полученный продукт остался столь же пластичным, как и нитроцеллюлоза, но он уже не был легко воспламеняющимся. С 1924 г. ацетилцеллюлозные пленки начали использовать в производстве кинофильмов, так как развивающаяся кинопромышленность особенно остро нуждалась в заменителе целлулоида.
Изучая высокомолекулярные природные соединения, химики рассчитывали не только получить их синтетические аналоги, но и открыть новые типы соединений. Одним из методов синтеза молекул-гигантов является полимеризация мономеров (мономер - вещество, молекулы которого способны реагировать между собой или с молекулами других веществ с образованием полимера).
Способ объединения мономеров в гигантскую молекулу можно пояснить хотя бы на примере этилена С 2 Н 4 . Напишем структурные формулы двух молекул этилена:
Представим себе, что атом водорода переместился из одной молекулы в другую, в результате в этой молекуле вместо двойной связи появилась свободная одинарная связь. Свободная связь появилась и у первой молекулы, из которой ушел водород. Поэтому эти две молекулы могут соединиться друг с другом.
Такая молекула содержит уже четыре углеродных атома и одну двойную связь, как и молекула исходного этилена. Следовательно, при взаимодействии этой молекулы с еще одной молекулой этилена также может произойти перемещение атома водорода и разрыв двойной связи. Образующаяся в результате молекула будет содержать шесть атомов углерода и одну двойную связь. Таким способом можно получить последовательно молекулу с восемью, десятью и более атомами углерода. Фактически так можно получать молекулы почти любой заданной длины.
Американский химик Лео Хендрик Бакеланд (1863-1944) искал заменитель шеллака - воскоподобного вещества, выделяемого некоторыми видами тропических насекомых. Для этой цели ему необходим был раствор клейкого дегтеобразного вещества. Бакеланд начал с того, что провел полимеризацию фенола и формальдегида и получил полимер, для которого не смог подобрать растворитель. Этот факт привел его к мысли, что такой твердый, практически нерастворимый и, как выяснилось, не проводящий электричество полимер может оказаться ценным материалом. Так, например, из него можно отливать детали, которые легко будет обрабатывать на станках. В 1909 г. Бакеланд сообщил о полученном им материале, который он назвал бакелит . Эта фенолформальдегидная смола была первой синтетической пластмассой , которая по ряду свойств осталась непревзойденной.
Нашли применение и синтетические волокна. Это направление возглавил американский химик Уоллес Хьюм Карозерс (1896-1937). Вместе с американским химиком Джулиусом Артуром Ньюлендом (1878-1936) он исследовал родственные каучуку эластомеры . Результатом его работ было получение в 1932 г. неопрена - одного из синтетических каучуков .
Продолжая изучение полимеров, Карозерс попытался полимеризовать смесь диаминов и дикарбоновых кислот и получил волокнистый полимер. Длинные молекулы этого полимера содержат комбинации атомов, подобные пептидным связям (см. разд. «Белки») в белке шелка. Вытягивая эти волокна, получают то, что мы сегодня называем найлоном . Карозерс завершил эту работу буквально накануне преждевременной смерти. Разразившаяся вторая мировая война заставила химиков на время забыть об открытии Карозерса. Однако после окончания войны найлон начал вытеснять шелк и вскоре пришел ему на смену (в частности, в производстве чулочного трикотажа).
Первые синтетические полимеры были получены, как правило, случайно, методом проб и ошибок, поскольку и о строении молекул-гигантов, и о механизме полимеризации было в ту пору мало что известно. Первым за изучение строения полимеров взялся немецкий химик Герман Штаудингер (1881-1965) и сделал в этой области немало. Штаудингеру удалось раскрыть общий принцип построения многих высокомолекулярных природных и искусственных веществ и наметить пути их исследования и синтеза. Благодаря работам Штаудингера выяснилось, что присоединение мономеров друг к другу может происходить беспорядочно и приводить к образованию разветвленных цепей, прочность которых значительно ниже.
Начались интенсивные поиски способов получения линейных неразветвленных полимеров. И в 1953 г. немецкий химик Карл Циглер (1898-1973) открыл свой знаменитый титан-алюминиевый катализатор, на котором был получен полиэтилен с регулярной структурой.
Итальянский химик Джулио Натта (1903-1979) модифицировал катализатор Циглера и разработал метод получения нового класса синтетических высокомолекулярных соединений - стерео-регулярных полимеров . Был разработан метод получения полимеров с заданными свойствами.
Одним из главных источников основных органических соединений, необходимых для производства новых синтетических продуктов, является нефть . Эта жидкость известна с античных времен, но чтобы использовать ее в больших количествах, необходимо было открыть способ выкачивания нефти из обширных подземных месторождений. Американский изобретатель Эдвин Лаурентин Дрейк (1819-1880) первым в 1859 г. начал бурить нефтяные скважины. Столетие спустя нефть стала основным источником органических соединений, источником тепла и энергии.
Еще более важным источником органических продуктов является каменный уголь, хотя в век двигателей внутреннего сгорания мы обычно забываем о нем. Русский химик Владимир Николаевич Ипатьев (1867-1952) на рубеже веков начал исследовать сложные углеводороды, содержащиеся в нефти и каменноугольном дегте, и, в частности, изучать их реакции, идущие при высоких температурах. Немецкий химик Фридрих Карл Рудольф Бергиус (1884-1949), используя данные Ипатьева, разработал в 1912 г. практические способы обработки каменного угля и нефти водородом с целью получения бензина.
Однако мировые запасы ископаемого топлива (каменный уголь плюс нефть) ограничены и невосполнимы. Все прогнозы говорят о том, что наступит день, когда запасы ископаемого топлива будут исчерпаны, и что этот день не за горами, особенно если учесть, что численность населения земли быстро увеличивается, а, следовательно, увеличивается и потребность в энергии .
Слово «полимер» — греческого происхождения. Буквально, полимер — это молекула, состоящая из многих («поли») частей («мерос»), каждая из которых представляет собой мономерную, то есть состоящую из одной («монос») части, молекулу. Проще говоря, полимеры — это разветвленные цепочки из обычных молекул, мономеров.
Так выглядит процесс выработки пластика сегодня
На наших глазах вилка исчезает
Как растят суперпластик Ученые создали генетически модифицированное растение, в семенах которого содержится органический полимер PHBV. Из него делают саморазрушающийся термопластик. Некоторые виды бактерий вырабатывают полимеры вроде PHBV, используя их как хранилище энергии, как крахмал у растений или гликоген у животных
В XX веке человечество пережило синтетическую революцию. Ее главным завоеванием можно смело назвать изобретение пластика. Сейчас даже трудно представить себе, что еще в начале прошлого века его просто не существовало и все вокруг делалось из модных нынче натуральных материалов.
Игра в мяч
Человечество, можно сказать, доигралось до изобретения пластика. В истории этого материала прослеживается мистическая связь с любовью людей к игре с мячом. Во II веке до нашей эры греки играли в мяч из желчного пузыря свиньи, наполненного воздухом. Этот спортивный снаряд по форме напоминал яйцо или, если угодно, мяч для регби. Уже тогда наши предки искали способ исправить форму мяча и сделать его абсолютно круглым. Древние греки без конца пробовали различные растительные добавки, чтобы придать стенкам свиного пузыря эластичность.
Индейцы майя делали мяч из кожуры плодов, обернутой в натуральный каучук, который они добывали из фикусов. Похожую технологию использовали жители островов Океании и Юго-восточной Азии. До ума, впрочем, ее довели только европейцы. В XIX веке из Малайзии в Европу было привезено гуттаперчевое дерево, из млечного сока которого стали добывать гуттаперчу. Первым изделием из нового материала стали шары для гольфа (а вовсе не цирковые мальчики). Сегодня этот материал используют для изоляции подводных и подземных кабелей и производства клеев.
От мяча эстафетная палочка перешла к бильярду. В 1862 году британский химик Александр Паркес решил придумать дешевый заменитель дорогостоящей слоновой кости, из которой делались бильярдные шары. Результатом стало открытие первого пластификатора.
Сперва Паркес изобрел нитроцеллюлозу. Однако ее свойства не подходили для игральных шаров, так как материал оказался легкобьющимся. Нужна была добавка, которая смягчила бы его, не уменьшив главное полезное свойство — упругость. Паркес решил добавить камфору. Смесь нитроцеллюлозы, камфоры и спирта подогревалась до текучего состояния, далее заливалась в форму и застывала при нормальном атмосферном давлении. Так на свет появился паркезин — первый полусинтетический пластик. Увы, как это часто бывает, его первооткрыватель не добился коммерческого успеха.
Зато последователь Паркеса, американец Джон Хайт, заработал на первом пластике целое состояние. Он основал компанию и стал производить расчески, игрушки и массу других изделий из целлулоида. К сожалению, материал оказался высоковоспламеняемым, поэтому сейчас из него делают лишь шарики для настольного тенниса да школьные линейки.
В 1897 году немецкие химики открыли казеин — протеин, образующийся при сворачивании молока под действием протеолитических ферментов (тех самых веществ, с помощью которых мы перевариваем пищу). Ученые обнаружили, что казеин придает материалам эластичные свойства, а при остывании — твердость и прочность. Из казеина наладили выпуск пуговиц и вязальных спиц.
Первый полностью синтетический пластик был разработан Лео Беикеландом в США в 1907 году. Беикеланд искал синтетический заменитель для шеллака — воскообразного вещества, выделяемого тропическими насекомыми. Его в огромных количествах потребляла граммофонная и электротехническая промышленность: из шеллака делали пластинки и изоляторы. Ученый изобрел жидкое вещество, напоминающее смолу, которое после застывания превращалось в материал с удивительными свойствами. Изделия из него были прочными и не растворялись даже в кислоте. Первые телефонные аппараты были сделаны именно из находки Беикеланда. Пластик мгновенно (менее чем за год) распространился по всему миру.
Начало биоэры
Однако пластик, кроме всех своих замечательных свойств, имеет два важных недостатка. Во‑первых, он производится из невосстанавливаемых природных ресурсов — нефти, угля и газа. Во‑вторых, его главное достоинство — долговечность, — за которым так гнались изобретатели пластика в начале прошлого столетия, сегодня обернулось недостатком. Чем больше пластмассы мы используем, тем быстрее растут горы отходов, которые не разлагаются в среде ни при каких условиях. Миллионы тонн пластика скапливаются в природе, загрязняя окружающую среду.
Поэтому ближе к концу прошлого столетия ученые задумались о том, чтобы создать материал, схожий по свойствам с пластиком. При этом требовалось, чтобы заменитель пластика можно было делать из возобновляемых компонентов (например, растений) и чтоб он был по зубам бактериям, то есть мог разлагаться в природных условиях. В середине 1990-х, как грибы после дождя, стали появляться сенсационные сообщения об изобретении биопластика — пластика из натурального крахмала, разлагающегося под воздействием различных микроорганизмов. Но тогда о крупномасштабном внедрении новшества в нашу повседневную жизнь не могло быть и речи: производство биопластика оказалось слишком дорогим удовольствием.
С наступлением нового века ситуация изменилась кардинальным образом. Ученые нашли способ снизить себестоимость изготовления биопластика и утверждают, что в скором времени она приблизится к стоимости изготовления обычной пластмассы. Более того, некоторые эксперты считают, что цена на разлагаемую пластмассу искусственно завышается коммерческими производителями и нефтяными компаниями (нефтяники не жалуют биопластик потому, что его массовое производство может привести к падению цен на нефть). А ведь, если посчитать затраты на переработку пластмассовых отходов и внести эту цифру в стоимость обычного пластика, еще неизвестно, какой из них будет дороже.
Пластиковые плантации
Обычный пластик не поддается разложению в среде из-за того, что он состоит из слишком длинных полимеров, которые тесно связаны друг с другом. Совсем по‑иному ведет себя пластик, содержащий более короткие натуральные полимеры растений.
Биопластик можно делать из крахмала, который является природным полимером и производится растениями в процессе фотосинтеза. В большом количестве крахмал содержится в злаковых, картофеле и других неприхотливых растениях. Урожай крахмала с кукурузы доходит до 80% от всей собранной зеленой массы. Поэтому производство пластика нового поколения должно стать достаточно рентабельным. Биопластик ломается и крошится при любой температуре, в которой активны микроорганизмы. Остаточными продуктами этого процесса являются двуокись углерода и вода.
Из-за того что крахмал хорошо растворяется в воде, изделия из него легко деформируются при малейшем контакте с влагой. Для того чтобы придать крахмалу большую прочность, его обрабатывают специфическими бактериями, разлагающими полимеры крахмала в мономеры молочной кислоты. Затем химическим способом мономеры заставляют соединиться в цепочки полимеров. Эти полимеры гораздо прочнее, но при этом не так длинны, как полимеры пластмассы, и могут разлагаться микроорганизмами. Полученный материал назвали полилактидом (PLA). В прошлом году в штате Небраска открылся первый в мире завод по изготовлению PLA.
Другой способ получения биопластика заключается в использовании бактерий Alcaligenes eutrophus. В процессе своей жизнедеятельности они производят гранулы органического пластика, получившего название «полигидроксиалканонат» (PHA). Уже были проделаны успешные эксперименты по внедрению генов этих бактерий в хромосомы растений, чтобы те смогли в дальнейшем производить пластик внутри своих собственных клеток. Это означает, что пластик можно буквально выращивать. Правда, такой способ пока остается дорогостоящим. К тому же, так как процесс включает в себя вмешательство на генетическом уровне, он имеет и своих противников.
Кукурузные вилки
Биопластики уже сегодня находят широкое практическое применение во многих странах. Полилактид можно использовать для производства одноразовых подгузников и посуды. Он не вреден для человеческого организма, поэтому не так давно его начали применять в медицине в качестве основы для временных имплантатов и хирургических ниток. «Кукурузные» изделия могут быть сделаны с расчетом на срок самораспада, который требует специфика его употребления. Некоторые виды биопластика растворяются очень быстро, другие могут служить месяцы, а то и годы.
Итальянская компания Novamont уже давно приступила к выпуску биопластика под названием MaterBi. В Австрии и Швеции McDonald’s предлагает в своих ресторанах «кукурузные» вилки и ножи, компания Goodyear выпустила первые биошины Biotred GT3, а магазины Carrefour во Франции, Esselunga в Италии и CoOp в Норвегии продают свои товары в биопластиковых пакетах из того же MaterBi.
Австралийские ученые из Исследовательского международного центра продовольственной и упаковочной индустрии тоже рекламируют свою продукцию из кукурузного крахмала. Среди новшеств — горшки для рассады, которые саморазлагаются в почве под воздействием влаги, и черная пленка, замечательные свойства которой порадуют любого огородника.
Уже появились идеи производства не просто одноразовых биоупаковок, а пищевых упаковок, которые содержали бы в себе специфичные бактерии, убивающие патогены — возбудителей различных болезней. Одним из самых опасных патогенов является бактерия под названием «листерия». Она развивается в пищевых продуктах даже при низких температурах и может стать причиной смертельной болезни, сопровождающейся высокой температурой и тошнотой. Ученые из Университета Клемсон изобрели биопластик, который содержит бактерии низина, не позволяющие листерии размножаться. Низин представляет собой антибиотик, который вырабатывается молочнокислыми бактериями Streptococcus lactis. Он безвреден для живого организма и быстро разрушается ферментами человеческого кишечника.
Есть и другие не менее интересные проекты. Фантазии исследователям не занимать. Так что вполне может статься, скоро горы мусора из долговечного пластика уйдут в прошлое, а на их месте будут построены заводы по выпуску «кукурузных» пластмассовых изделий.